• Title/Summary/Keyword: Decision-Tree

검색결과 1,673건 처리시간 0.035초

Very Fast Decision Tree 기반 Naive Bayesian 알고리즘의 Weight 부여 기법 (An Attribute Weighting Approach for Naive Bayesian based on Very Fast Decision Tree)

  • 김세준;유승언;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.139-140
    • /
    • 2018
  • 본 논문에서는 지도 기계 학습 알고리즘 중 하나인 Naive Bayesian (NB) 알고리즘의 데이터 분류 정확도를 향상시키기 위하여 데이터 속성에 Weight를 부여하는 새로운 기법을 제안하였다. 기존에 Decision Tree(DT) 알고리즘의 깊이를 이용하여 Weigth를 부여하는 방법이 제안되었으나, DT를 구축하는데 오버헤드가 크기 때문에 데이터의 실시간 분석이나 자원 제한적인 환경에서의 적용은 어렵다는 단점이 있다. 이를 해결하기 위하여 본 논문에서는 최소한의 데이터를 사용하여 신속하게 DT를 구축하는 Very Fast Decision Tree (VFDT) 알고리즘 기반의 Weight 부여 기법을 제안함으로써 적은 오버헤드로 NB의 정확도를 향상시킨다.

  • PDF

Fuzzy Classification Rule Learning by Decision Tree Induction

  • Lee, Keon-Myung;Kim, Hak-Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.44-51
    • /
    • 2003
  • Knowledge acquisition is a bottleneck in knowledge-based system implementation. Decision tree induction is a useful machine learning approach for extracting classification knowledge from a set of training examples. Many real-world data contain fuzziness due to observation error, uncertainty, subjective judgement, and so on. To cope with this problem of real-world data, there have been some works on fuzzy classification rule learning. This paper makes a survey for the kinds of fuzzy classification rules. In addition, it presents a fuzzy classification rule learning method based on decision tree induction, and shows some experiment results for the method.

FCM 알고리즘을 이용한 이진 결정 트리의 구성에 관한 연구 (A Study on the Design of Binary Decision Tree using FCM algorithm)

  • 정순원;박중조;김경민;박귀태
    • 전자공학회논문지B
    • /
    • 제32B권11호
    • /
    • pp.1536-1544
    • /
    • 1995
  • We propose a design scheme of a binary decision tree and apply it to the tire tread pattern recognition problem. In this scheme, a binary decision tree is constructed by using fuzzy C-means( FCM ) algorithm. All the available features are used while clustering. At each node, the best feature or feature subset among these available features is selected based on proposed similarity measure. The decision tree can be used for the classification of unknown patterns. The proposed design scheme is applied to the tire tread pattern recognition problem. The design procedure including feature extraction is described. Experimental results are given to show the usefulness of this scheme.

  • PDF

Decision Tree를 이용한 고객 취향 관리 시스템 (Customer Relationship Management System using Decision Tree)

  • 최종훈;이은;공은배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.60-62
    • /
    • 2000
  • 인터넷의 활성화로 많은 사람들이 인터넷을 이용하고 이에 따라 인터넷을 이용한 서비스도 홍수를 이루고 있다. 이에 따라 인터넷을 상업적 목적으로 사용하는 서비스도 증가하고 있다. 그러나 많은 인터넷 서비스들이 고객들에게 획일적이고 일률적인 서비스만을 제공한다. 각각의 고객에게 취향과 관심분야에 따른 차별화 된 서비스가 필요로 한다. 각 고객에게 1대 1로 차별화 된 service를 제공하기 위해서 먼저 각 고객을 구별하고 그 고객의 취향과 관심분야의 파악을 위해서 인터넷에서의 행동을 관찰한다. 또한 고객의 관리를 위해 고객을 필요에 따라 그룹화하고, 고객과 직접 접촉을 통해 고객 정보를 파악할 수도 있다. 파악된 고객 정보의 효율적 저장과 분석을 위해서 decision tree를 이용해 학습을 한다. 고객의 행동의 특성상 incremental한 학습 알고리즘을 사용하며 고객의 선호도를 이용한 decision tree를 이용한다. 학습된 결과를 이용해서 1대 1 서비스를 제공함으로써 고객에서 편리성을 제공하고 서비스에 대한 친밀감과 고객의 흥미를 유발할 수 있다.

  • PDF

의사결정나무 모델에서의 중요 룰 선택기법 (Rule Selection Method in Decision Tree Models)

  • 손지은;김성범
    • 대한산업공학회지
    • /
    • 제40권4호
    • /
    • pp.375-381
    • /
    • 2014
  • Data mining is a process of discovering useful patterns or information from large amount of data. Decision tree is one of the data mining algorithms that can be used for both classification and prediction and has been widely used for various applications because of its flexibility and interpretability. Decision trees for classification generally generate a number of rules that belong to one of the predefined category and some rules may belong to the same category. In this case, it is necessary to determine the significance of each rule so as to provide the priority of the rule with users. The purpose of this paper is to propose a rule selection method in classification tree models that accommodate the umber of observation, accuracy, and effectiveness in each rule. Our experiments demonstrate that the proposed method produce better performance compared to other existing rule selection methods.

의사결정나무 기법을 활용한 백화점의 고객세분화 사례연구 (A Case Study on segmentation of Department Store using Decision Tree Analysis)

  • 채경희;김상철
    • 유통과학연구
    • /
    • 제8권1호
    • /
    • pp.13-19
    • /
    • 2010
  • 기업에서는 마케팅 비용대비 효과를 극대화하기 위하여, 고객을 세분한 후, 목표고객을 선별하여 해당 고객에 적절한 캠페인을 실시하고 있다. 특히 고객세분화 방법으로 통계 모형을 비롯하여 데이터마이닝 방법 등 다양한 방법들이 활용되고 있다. 그 중에서도 데이터마이닝은 1990년대 초에 도입되어 다양한 경영 문제를 해결하고 있다. 본 논문에서는 이와 같은 고객세분화에 활용되고 있는 데이터마이닝 방법에 대해 살펴본 후, 실제 백화점 사례를 기반으로 고객세분화에 주로 활용되고 있는 의사결정나무 분석 방법의 효과 및 장단점에 대해 논의해보고자 한다.

  • PDF

의사 결정 트리를 이용한 색채 정보 기반 심리 분석 (Color Information Based Psychology Analysis Using Decision Tree)

  • 남지효;이민정;오흥민;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.514-516
    • /
    • 2016
  • 사람은 개인마다 선호색이 다르다. 때문에 색채를 통해서 개인의 성향을 분석하기도 한다. 일반적으로 난색은 밝고 따뜻한 색으로 활기와 적극성을 띄며 한색은 차갑고 냉정함, 차분함 등과 같은 의미를 지닌다. 이러한 색채가 가지는 의미는 개인의 환경, 성향, 성별, 연령 등에 따라 다르게 나타난다. 색채 선호는 일반적으로 개인이 색채에 대해 좋아하는 정도를 의미하는 것으로 개인의 성향이나 상황, 경험 등에 의해 형성된 지극히 개인적인 색을 말한다. 본 논문에서는 색채 선호를 분석하는 심리 검사 CRR와 Flood Fill 알고리즘을 적용하여 그림에 색채를 채워서 주조색과, 보조색을 각각 Decision Tree에 적용한다. Decision Tree의 결과를 기반으로 데이터베이스와 연동하여 개인의 심리 상태를 분석할 수 있는 방법을 제안한다.

  • PDF

Improved Decision Tree Classification (IDT) Algorithm For Social Media Data

  • Anu Sharma;M.K Sharma;R.K Dwivedi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.83-88
    • /
    • 2024
  • In this paper we used classification algorithms on social networking. We are proposing, a new classification algorithm called the improved Decision Tree (IDT). Our model provides better classification accuracy than the existing systems for classifying the social network data. Here we examined the performance of some familiar classification algorithms regarding their accuracy with our proposed algorithm. We used Support Vector Machines, Naïve Bayes, k-Nearest Neighbors, decision tree in our research and performed analyses on social media dataset. Matlab is used for performing experiments. The result shows that the proposed algorithm achieves the best results with an accuracy of 84.66%.

CAE와 Decision-tree를 이용한 사출성형 공정개선에 관한 연구 (A Study on the Improvement of Injection Molding Process Using CAE and Decision-tree)

  • 황순환;한성렬;이후진
    • 한국산학기술학회논문지
    • /
    • 제22권4호
    • /
    • pp.580-586
    • /
    • 2021
  • 현재 사출성형분야의 Computer Aided Testing(CAT) 방법론으로 CAE(Computer Aided Engineering)를 이용한 수치 해석 기법이 주를 이루고 있다. 그러나 최근 시뮬레이션에 추가로 인공지능 기법을 응용하는 방법론이 연구되고 있다. 우리는 지난 연구에서 다양한 Machine Learning 기법을 활용하여 사출 성형 공정에 따른 변형 결과를 비교하였으며, 최종적으로 MLP(Multi-Layer Perceptron) 예측모델을 생성하였고, HMA(Hybrid Metaheuristic Algorithm)를 이용하여 최적화 결과를 얻어냈다. 그러나 MLP는 예측 성능이 우수한 반면 블랙박스와 같이 결정 과정에 대한 설명이 부족하다. 본 연구에서는 Radiator Tank 부품에 대하여 사출 성형 해석 소프트웨어인 Autodesk Moldflow 2018을 이용하여 수치 해석 기법으로 데이터를 생성하고, Machine Learning 소프트웨어인 RapidMiner Studio version 9.5를 활용하여 여러 Machine Learning Algorithms 모델을 생성하여 평균 제곱근 오차를 비교하였다. Decision-tree는 Root Mean Square Error(RMSE) 값이 다른 Machine Learning 기법에 비해 양호한 예측 성능을 갖추고 있었다. Decision-tree의 크기를 결정하는 Maximal Depth에 따라 분류 기준을 높일 수 있지만 복잡성도 함께 증가시켰다. Decision-tree를 이용하여 구속 조건을 만족하는 중간 값을 선정하여 시뮬레이션을 진행한 결과 기존의 시뮬레이션만 진행한 것보다 7.7%의 개선 효과가 있었다.

대표적인 의사결정나무 알고리즘의 해석력 비교 (Interpretability Comparison of Popular Decision Tree Algorithms)

  • 홍정식;황근성
    • 산업경영시스템학회지
    • /
    • 제44권2호
    • /
    • pp.15-23
    • /
    • 2021
  • Most of the open-source decision tree algorithms are based on three splitting criteria (Entropy, Gini Index, and Gain Ratio). Therefore, the advantages and disadvantages of these three popular algorithms need to be studied more thoroughly. Comparisons of the three algorithms were mainly performed with respect to the predictive performance. In this work, we conducted a comparative experiment on the splitting criteria of three decision trees, focusing on their interpretability. Depth, homogeneity, coverage, lift, and stability were used as indicators for measuring interpretability. To measure the stability of decision trees, we present a measure of the stability of the root node and the stability of the dominating rules based on a measure of the similarity of trees. Based on 10 data collected from UCI and Kaggle, we compare the interpretability of DT (Decision Tree) algorithms based on three splitting criteria. The results show that the GR (Gain Ratio) branch-based DT algorithm performs well in terms of lift and homogeneity, while the GINI (Gini Index) and ENT (Entropy) branch-based DT algorithms performs well in terms of coverage. With respect to stability, considering both the similarity of the dominating rule or the similarity of the root node, the DT algorithm according to the ENT splitting criterion shows the best results.