• Title/Summary/Keyword: Decision-Making Models

Search Result 674, Processing Time 0.027 seconds

Comparison and Analysis on Risk Assessment Models of Coastal Waters considering Human Factors (인적요인을 고려한 연안해역 위험도 평가모델 비교·분석)

  • Kim, In-Chul;An, Kwang
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.27-34
    • /
    • 2016
  • For the prevention of marine casualties, international bodies have mainly focused on strengthening ship's stability and design, maritime education and training, and improving maritime traffic environment. Statistics analysis on marine casualties showed that most of casualties occurred in coastal waters, especially by human elements. In order to review the conformity of existing prevention measures with the result of the statistics analysis, the IMO's SHELL model was applied to the established measures. As a result, ergonomic approaches were needed for the prevention of human errors in coastal waters, so that the priority should be given to the interface between ship's operator and navigational environment. For this study, Rasmussen's SRK pyramid, which showed decision making mechanism of human, and the US Coast Guard's investigation manual on marine casualties concerning the collapse of safe maritime transportation system were reviewed, and the merits and demerits within the risk assessment tools such as IWRAP, PAWSA, ES model, PARK model, and NURI model were also studied. Although the effectiveness of the existing risk assessment models was proved in ports and approaching channels, it is concluded that the need of new models for converting Korean seafarers' qualitative risk to quantitative risk was proposed so as to print hazard maps which make seafarers instinctively recognize comparative hazard levels of coastal waters.

The use of MODIS atmospheric products to estimate cooling degree days at weather stations in South and North Korea (MODIS 대기자료를 활용한 남북한 기상관측소에서의 냉방도일 추정)

  • Yoo, Byoung Hyun;Kim, Kwang Soo;Lee, Jihye
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.97-109
    • /
    • 2019
  • Degree days have been determined using temperature data measured at nearby weather stations to a site of interest to produce information for supporting decision-making on agricultural production. Alternatively, the data products of Moderate Resolution Imaging Spectroradiometer (MODIS) can be used for estimation of degree days in a given region, e.g., Korean Peninsula. The objective of this study was to develop a simple tool for processing the MODIS product for estimating cooling degree days (CDD), which would help assessment of heat stress conditions for a crop as well as energy requirement for greenhouses. A set of scripts written in R was implemented to obtain temperature profile data for the region of interest. These scripts had functionalities for processing spatial data, which include reprojection, mosaicking, and cropping. A module to extract air temperature at the surface pressure level was also developed using R extension packages such as rgdal and RcppArmadillo. Random forest (RF) models, which estimate mean temperature and CDD with a different set of MODIS data, were trained at 34 sites in South Korea during 2009 - 2018. Then, the values of CDD were calculated over Korean peninsula during the same period using those RF models. It was found that the CDD estimates using the MODIS data explained >74% of the variation in the CDD measurements at the weather stations in North Korea as well as South Korea. These results indicate that temperature data derived from the MODIS atmospheric products would be useful for reliable estimation of CDD. Our results also suggest that the MODIS data can be used for preparation of weather input data for other temperature-based agro-ecological models such as growing degree days or chill units.

Denoising Self-Attention Network for Mixed-type Data Imputation (혼합형 데이터 보간을 위한 디노이징 셀프 어텐션 네트워크)

  • Lee, Do-Hoon;Kim, Han-Joon;Chun, Joonghoon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.135-144
    • /
    • 2021
  • Recently, data-driven decision-making technology has become a key technology leading the data industry, and machine learning technology for this requires high-quality training datasets. However, real-world data contains missing values for various reasons, which degrades the performance of prediction models learned from the poor training data. Therefore, in order to build a high-performance model from real-world datasets, many studies on automatically imputing missing values in initial training data have been actively conducted. Many of conventional machine learning-based imputation techniques for handling missing data involve very time-consuming and cumbersome work because they are applied only to numeric type of columns or create individual predictive models for each columns. Therefore, this paper proposes a new data imputation technique called 'Denoising Self-Attention Network (DSAN)', which can be applied to mixed-type dataset containing both numerical and categorical columns. DSAN can learn robust feature expression vectors by combining self-attention and denoising techniques, and can automatically interpolate multiple missing variables in parallel through multi-task learning. To verify the validity of the proposed technique, data imputation experiments has been performed after arbitrarily generating missing values for several mixed-type training data. Then we show the validity of the proposed technique by comparing the performance of the binary classification models trained on imputed data together with the errors between the original and imputed values.

Multi-source information integration framework using self-supervised learning-based language model (자기 지도 학습 기반의 언어 모델을 활용한 다출처 정보 통합 프레임워크)

  • Kim, Hanmin;Lee, Jeongbin;Park, Gyudong;Sohn, Mye
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.141-150
    • /
    • 2021
  • Based on Artificial Intelligence technology, AI-enabled warfare is expected to become the main issue in the future warfare. Natural language processing technology is a core technology of AI technology, and it can significantly contribute to reducing the information burden of underrstanidng reports, information objects and intelligences written in natural language by commanders and staff. In this paper, we propose a Language model-based Multi-source Information Integration (LAMII) framework to reduce the information overload of commanders and support rapid decision-making. The proposed LAMII framework consists of the key steps of representation learning based on language models in self-supervsied way and document integration using autoencoders. In the first step, representation learning that can identify the similar relationship between two heterogeneous sentences is performed using the self-supervised learning technique. In the second step, using the learned model, documents that implies similar contents or topics from multiple sources are found and integrated. At this time, the autoencoder is used to measure the information redundancy of the sentences in order to remove the duplicate sentences. In order to prove the superiority of this paper, we conducted comparison experiments using the language models and the benchmark sets used to evaluate their performance. As a result of the experiment, it was demonstrated that the proposed LAMII framework can effectively predict the similar relationship between heterogeneous sentence compared to other language models.

D4AR - A 4-DIMENSIONAL AUGMENTED REALITY - MODEL FOR AUTOMATION AND VISUALIZATION OF CONSTRUCTION PROGRESS MONITORING

  • Mani Golparvar-Fard;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.30-31
    • /
    • 2009
  • Early detection of schedule delay in field construction activities is vital to project management. It provides the opportunity to initiate remedial actions and increases the chance of controlling such overruns or minimizing their impacts. This entails project managers to design, implement, and maintain a systematic approach for progress monitoring to promptly identify, process and communicate discrepancies between actual and as-planned performances as early as possible. Despite importance, systematic implementation of progress monitoring is challenging: (1) Current progress monitoring is time-consuming as it needs extensive as-planned and as-built data collection; (2) The excessive amount of work required to be performed may cause human-errors and reduce the quality of manually collected data and since only an approximate visual inspection is usually performed, makes the collected data subjective; (3) Existing methods of progress monitoring are also non-systematic and may also create a time-lag between the time progress is reported and the time progress is actually accomplished; (4) Progress reports are visually complex, and do not reflect spatial aspects of construction; and (5) Current reporting methods increase the time required to describe and explain progress in coordination meetings and in turn could delay the decision making process. In summary, with current methods, it may be not be easy to understand the progress situation clearly and quickly. To overcome such inefficiencies, this research focuses on exploring application of unsorted daily progress photograph logs - available on any construction site - as well as IFC-based 4D models for progress monitoring. Our approach is based on computing, from the images themselves, the photographer's locations and orientations, along with a sparse 3D geometric representation of the as-built scene using daily progress photographs and superimposition of the reconstructed scene over the as-planned 4D model. Within such an environment, progress photographs are registered in the virtual as-planned environment, allowing a large unstructured collection of daily construction images to be interactively explored. In addition, sparse reconstructed scenes superimposed over 4D models allow site images to be geo-registered with the as-planned components and consequently, a location-based image processing technique to be implemented and progress data to be extracted automatically. The result of progress comparison study between as-planned and as-built performances can subsequently be visualized in the D4AR - 4D Augmented Reality - environment using a traffic light metaphor. In such an environment, project participants would be able to: 1) use the 4D as-planned model as a baseline for progress monitoring, compare it to daily construction photographs and study workspace logistics; 2) interactively and remotely explore registered construction photographs in a 3D environment; 3) analyze registered images and quantify as-built progress; 4) measure discrepancies between as-planned and as-built performances; and 5) visually represent progress discrepancies through superimposition of 4D as-planned models over progress photographs, make control decisions and effectively communicate those with project participants. We present our preliminary results on two ongoing construction projects and discuss implementation, perceived benefits and future potential enhancement of this new technology in construction, in all fronts of automatic data collection, processing and communication.

  • PDF

A Study on Methodology for Improving Demand Forecasting Models in the Designated Driver Service Market (대리운전 시장의 지역별 수요 예측 모형의 성능 향상을 위한 방법론 연구)

  • Min-Seop Kim;Ki-Kun Park;Jae-Hyeon Heo;Jae-Eun Kwon;Hye-Rim Bae
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • Nowadays, the Designated Driver Services employ dynamic pricing, which adapts in real-time based on nearby driver availability, service user volume, and current weather conditions during the user's request. The uncertain volatility is the main cause of price increases, leading to customer attrition and service refusal from driver. To make a good Designated Driver Services, development of a demand forecasting model is required. In this study, we propose developing a demand forecasting model using data from the Designated Driver Service by considering normal and peak periods, such as rush hour and rush day, as prior knowledge to enhance the model performance. We propose a new methodology called Time-Series with Conditional Probability(TSCP), which combines conditional probability and time-series models to enhance performance. Extensive experiments have been conducted with real Designated Driver Service data, and the result demonstrated that our method outperforms the existing time-series models such as SARIMA, Prophet. Therefore, our study can be considered for decision-making to facilitate proactive response in Designated Driver Services.

A study on the prediction of korean NPL market return (한국 NPL시장 수익률 예측에 관한 연구)

  • Lee, Hyeon Su;Jeong, Seung Hwan;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • The Korean NPL market was formed by the government and foreign capital shortly after the 1997 IMF crisis. However, this market is short-lived, as the bad debt has started to increase after the global financial crisis in 2009 due to the real economic recession. NPL has become a major investment in the market in recent years when the domestic capital market's investment capital began to enter the NPL market in earnest. Although the domestic NPL market has received considerable attention due to the overheating of the NPL market in recent years, research on the NPL market has been abrupt since the history of capital market investment in the domestic NPL market is short. In addition, decision-making through more scientific and systematic analysis is required due to the decline in profitability and the price fluctuation due to the fluctuation of the real estate business. In this study, we propose a prediction model that can determine the achievement of the benchmark yield by using the NPL market related data in accordance with the market demand. In order to build the model, we used Korean NPL data from December 2013 to December 2017 for about 4 years. The total number of things data was 2291. As independent variables, only the variables related to the dependent variable were selected for the 11 variables that indicate the characteristics of the real estate. In order to select the variables, one to one t-test and logistic regression stepwise and decision tree were performed. Seven independent variables (purchase year, SPC (Special Purpose Company), municipality, appraisal value, purchase cost, OPB (Outstanding Principle Balance), HP (Holding Period)). The dependent variable is a bivariate variable that indicates whether the benchmark rate is reached. This is because the accuracy of the model predicting the binomial variables is higher than the model predicting the continuous variables, and the accuracy of these models is directly related to the effectiveness of the model. In addition, in the case of a special purpose company, whether or not to purchase the property is the main concern. Therefore, whether or not to achieve a certain level of return is enough to make a decision. For the dependent variable, we constructed and compared the predictive model by calculating the dependent variable by adjusting the numerical value to ascertain whether 12%, which is the standard rate of return used in the industry, is a meaningful reference value. As a result, it was found that the hit ratio average of the predictive model constructed using the dependent variable calculated by the 12% standard rate of return was the best at 64.60%. In order to propose an optimal prediction model based on the determined dependent variables and 7 independent variables, we construct a prediction model by applying the five methodologies of discriminant analysis, logistic regression analysis, decision tree, artificial neural network, and genetic algorithm linear model we tried to compare them. To do this, 10 sets of training data and testing data were extracted using 10 fold validation method. After building the model using this data, the hit ratio of each set was averaged and the performance was compared. As a result, the hit ratio average of prediction models constructed by using discriminant analysis, logistic regression model, decision tree, artificial neural network, and genetic algorithm linear model were 64.40%, 65.12%, 63.54%, 67.40%, and 60.51%, respectively. It was confirmed that the model using the artificial neural network is the best. Through this study, it is proved that it is effective to utilize 7 independent variables and artificial neural network prediction model in the future NPL market. The proposed model predicts that the 12% return of new things will be achieved beforehand, which will help the special purpose companies make investment decisions. Furthermore, we anticipate that the NPL market will be liquidated as the transaction proceeds at an appropriate price.

The Effect of AD Noises Caused by AD Model Selection on Brand Awareness and Brand Attitudes (광고 모델 관련 광고 노이즈가 브랜드 인지도와 브랜드 태도에 미치는 영향)

  • Chung, Jai-Hak;Lee, Sang-Mi
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.3
    • /
    • pp.89-114
    • /
    • 2008
  • Most of the extant studies on communication effects have been devoted to the typical issue, "what types of communication activities are more effective for brand awareness or brand attitudes?" However, little research has addressed another question on communication decisions, "what makes communication activities less effective?" Our study focuses on factors negatively influenced on the efficiency of communication activities, especially of Advertising. Some studies have introduced concepts closely related to our topic such as consumer confusion, brand confusion, or belief confusion. Studies on product belief confusion have found some factors misleading consumers to misunderstand the physical features of products. Studies on brand confusion have uncovered factors making consumers confused on brand names. Studies on advertising confusion have tested the effects of ad models' employed by many other firms for different products on communication efficiency. We address a new concept, Ad noises, which are any factors interfering with consumers exposed to a particular advertisement in understanding messages provided by advertisements. The objective of this study is to understand the effects of ad noises caused by ad models on brand awareness and brand attitude. There are many different types of AD noises. Particularly, we study the effects of AD noises generated from ad model selection decision. Many companies want to employ celebrities as AD models while the number of celebrities who command a high degree of public and media attention are limited. Inevitably, several firms have been adopting the same celebrities as their AD models for different products. If the same AD model is adopted for TV commercials for different products, consumers exposed to those TV commercials are likely to fail to be aware of the target brand due to interference of TV commercials, for other products, employing the same AD model. This is an ad noise caused by employing ad models who have been exposed to consumers in other advertisements, which is the first type of ad noises studied in this research. Another type of AD noises is related to the decision of AD model replacement for the same product advertising. Firms sometimes launch another TV commercial for the same products. Some firms employ the same AD model for the new TV commercial for the same product and other firms employ new AD models for the new TV commercials for the same product. The typical problem with the replacement of AD models is the possibility of interfering with consumers in understanding messages of the TV commercial due to the dissimilarity of the old and new AD models. We studied the effects of these two types of ad noises, which are the typical factors influencing on the effect of communication: (1) ad noises caused by employing ad models who have been exposed to consumers in other advertisements and (2) ad noises caused by changing ad models with different images for same products. First, we measure the negative influence of AD noises on brand awareness and attitudes, in order to provide the importance of studying AD noises. Furthermore, our study unveiled the mediating conditions(variables) which can increase or decrease the effects of ad noises on brand awareness and attitudes. We study the effects of three mediating variables for ad noises caused by employing ad models who have been exposed to consumers in other advertisements: (1) the fit between product image and AD model image, (2) similarity between AD model images in multiple TV commercials employing the same AD model, and (3) similarity between products of which TV commercial employed the same AD model. We analyze the effects of another three mediating variables for ad noises caused by changing ad models with different images for same products: (1) the fit of old and new AD models for the same product, (2) similarity between AD model images in old and new TV commercials for the same product, and (3) concept similarity between old and new TV commercials for the same product. We summarized the empirical results from a field survey as follows. The employment of ad models who have been used in advertisements for other products has negative effects on both brand awareness and attitudes. our empirical study shows that it is possible to reduce the negative effects of ad models used for other products by choosing ad models whose images are relevant to the images of target products for the advertisement, by requiring ad models of images which are different from those of ad models in other advertisements, or by choosing ad models who have been shown in advertisements for other products which are not similar to the target product. The change of ad models for the same product advertisement can positively influence on brand awareness but positively on brand attitudes. Furthermore, the effects of ad model change can be weakened or strengthened depending on the relevancy of new ad models, the similarity of previous and current ad models, and the consistency of the previous and current ad messages.

  • PDF

The Role of PK/PD Modeling and Simulation in Model-based New Drug Development (모델 기반학적 신약개발에서 약동/약력학 모델링 및 시뮬레이션의 역할)

  • Yun, Hwi-Yeol;Baek, In-Hwan;Seo, Jeong-Won;Bae, Kyung-Jin;Lee, Mann-Hyung;Kang, Won-Ku;Kwon, Kwang-Il
    • Korean Journal of Clinical Pharmacy
    • /
    • v.18 no.2
    • /
    • pp.84-96
    • /
    • 2008
  • In the recent, pharmacokinetic (PK)/pharmacodynamic (PD) modeling has appeared as a critical path tools in new drug development to optimize drug efficacy and safety. PK/PD modeling is the mathematical approaches of the relationships between PK and PD. This approach in new drug development can be estimated inaccessible PK and PD parameters, evaluated competing hypothesis, and predicted the response under new conditions. Additionally, PK/PD modeling provides the information about systemic conditions for understanding the pharmacology and biology. These advantages of PK/PD model development are to provide the early decision-making information in new drug development process, and to improve the prediction power for the success of clinical trials. The purpose of this review article is to summarize the PK/PD modeling process, and to provide the theoretical and practical information about widely used PK/PD models. This review also provides model schemes and the differential equations for the development of PK/PD model.

  • PDF

A Study on the Improvement of the Accuracy of Photovoltaic Facility Location Using the Geostatistical Analysis (공간통계기법을 이용한 태양광발전시설 입지 정확성 향상 방안)

  • Kim, Ho-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.146-156
    • /
    • 2010
  • The objective of this study was to improve the accuracy of calculation and estimation of solar radiation and duration of sunshine, which are the most important variables of photovoltaic power generation in deciding the location of photovoltaic facilities efficiently. With increasing interest in new and renewable energies, research on solar energy is also being conducted actively, but there have not been many studies on the location of photovoltaic facilities. Thus, this study calculated solar duration and solar radiation based on geographical factors, which have the most significant effect on solar energy in GIS environment, and corrected the results of analysis using diffuse radiation. Moreover, we performed ordinary kriging, a spatial statistical analysis method, for estimating values for parts deviating from the spatial resolution of input data, and used variogram, which can determine the spatial interrelation and continuity of data, in order to estimate accurate values. In the course, we compared the values of variogram factors and estimates from applicable variogram models, and selected the model with the lowest error rate. This method is considered helpful to accurate decision making on the location of photovoltaic facilities.