• 제목/요약/키워드: Decision tree method

검색결과 630건 처리시간 0.023초

초분광영상의 분광라이브러리를 이용한 토지피복분류의 정확도 향상에 관한 연구 (The Study on Improving Accuracy of Land Cover Classification using Spectral Library of Hyperspectral Image)

  • 박정서;서진재;고제웅;조기성
    • 지적과 국토정보
    • /
    • 제46권2호
    • /
    • pp.239-251
    • /
    • 2016
  • 밴드 수가 많고 밴드 폭이 좁은 초분광영상은 기존의 다중 분광 영상에 비해 각 픽셀이 함유하고 있는 정보가 많아 영상을 이용한 토지피복분류를 하는데 있어 최적의 영상으로 평가 받고 있다. 하지만 초분광영상의 높은 분광해상도로 부터 증가된 데이터의 용량과 노이즈로 인해 다중분광영상을 분석하는 기법을 그대로 적용하기에는 효용성이 떨어진다. 초분광영상의 분석 기법으로서 벡터의 내적을 활용하는 SAM(Spectral Angle Mapping)은 연속적인 스펙트럼을 보이는 초분광영상의 특성을 해석하는데 가장 보편적인 방법이다. 이에 본 연구에서는 분광라이브러리를 이용한 초분광영상의 토지피복분류를 수행하기 위해 SAM기법을 채택하였으나 대기영향의 노이즈로 인해 낮은 정확도를 보였다. 이를 보안하기 위한 방법으로서 Decision Tree 기법을 제안하였고 그 결과, 분류 정확도를 향상시킬 수 있었다.

다중외적연관성규칙을 이용한 불필요한 입력변수 제거에 관한 연구 (A study on removal of unnecessary input variables using multiple external association rule)

  • 조광현;박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권5호
    • /
    • pp.877-884
    • /
    • 2011
  • 의사결정나무는 데이터마이닝의 대표적인 알고리즘으로서, 의사결정 규칙을 도표화하여 관심대상이 되는 집단을 몇 개의 소집단으로 분류하거나 예측을 수행하는 방법이다. 일반적으로 의사결정나무의 모형 생성 시, 입력 변수의 수가 많을 경우 생성된 의사결정모형은 복잡한 형태가 될 수 있고, 모형 탐색 및 분석에 있어 어려움을 겪기도 한다. 이때 입력변수들 간의 내재적인 관련성은 없으나, 외적 변수에 의하여 각 변수가 우연히 어떤 다른 변수와 연결됨으로써 관련성이 있는 것으로 나타나는 것을 종종 볼 수 있다. 이에 본 논문에서는 의사결정나무 생성 시, 입력 변수에 대한 외적 관계를 파악할 수 있는 다중외적연관성규칙을 이용하여 의사결정나무 생성에 불필요한 입력변수를 제거하는 방법을 제시하고 그 효율성을 파악하기 위하여 실제 자료에 적용하고자 한다.

적응적 움직임 벡터 해상도 고속 결정 기법 (Fast Decision Method of Adaptive Motion Vector Resolution)

  • 박상효
    • 방송공학회논문지
    • /
    • 제25권3호
    • /
    • pp.305-312
    • /
    • 2020
  • 기존 동영상 부호화 표준보다 더 높은 효율의 표준에 대한 수요가 커지면서, 최근 MPEG과 VCEG에서 Versatile Video Coding(VVC)이라는 차세대 동영상 부호화 프로젝트를 개발하고 표준화하고 있다. 압축 효율 증대를 위하여 다양한 화면간 부호화 기법이 등장하였으며, 특히 움직임 벡터의 적응적인 해상도 부호화가 등장하여 VVC의 압축 효율을 올리는데 기여하였다. 다만, 최적의 움직임 벡터 해상도를 결정하기 위해 부호화기에서 다양한 율-왜곡 비용을 계산해야 했기에, 부호화기 시간 복잡도가 높아지게 되었다. 실시간 동영상 방송 및 스트리밍 서비스를 위해서는 부호화기의 복잡도를 줄이는 것이 필요하나, 아직 적응적 움직임 벡터 해상도 결정기법에 대한 복잡도 감소 연구는 미개척분야이다. 따라서, 본 논문에서는 이 움직임 벡터 해상도 결정을 위한 부호화 복잡도를 줄이는 연구를 제안한다. 이를 위해, VVC의 특별한 트리 구조인 multi-type tree 구조 내에서의 부호화된 문맥을 활용한 고속 결정기법을 고안한다. 실험 결과, 본 고속결정 기법은 VVC 참조 소프트웨어 대비 약간의 압축효율 감소 내에서 10%의 전체 부호화 시간을 줄임을 확인하였다.

상태 공유와 결정트리 방법을 이용한 효율적인 문맥 종속 프로세스 모델링 (Efficient context dependent process modeling using state tying and decision tree-based method)

  • 안찬식;오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.369-377
    • /
    • 2010
  • HMM(Hidden Markov Model)을 사용하는 어휘 인식 시스템에서 인식 시 훈련 중에 나타나지 않는 모델들로 인해 인식률의 저하를 가져오며 인식 대상 어휘가 변경되거나 추가되면 데이터베이스의 수집과 훈련 과정을 수행하여 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 방법과 모델 공유 방법을 사용하여 효율적인 문맥 종속 프로세스 모델링 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 모델 공유 방법을 이용하여 모델의 재생성 과정을 줄이고 강인하고 정확한 문맥 종속 음향 모델링을 제공한다. 또한, 모델의 수를 줄이고 훈련 중에 나타나지 않는 모델들에 대해 문맥 종속 유사 음소 모델을 제공하여 훈련 중에 나타나지 않는 모델의 문제점을 해결하고 훈련성을 확보하였다. 제안된 방법으로 6종류의 음성 데이터베이스를 이용하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 어휘 종속 인식 실험에서는 98.01%의 성능을 보였고, 어휘 독립 인식 실험에서 97.38%의 성능을 보였다.

깊이 카메라와 SVM을 이용한 수화 인식 시스템 (Sign Language Recognition System Using SVM and Depth Camera)

  • 김기상;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권11호
    • /
    • pp.63-72
    • /
    • 2014
  • 본 논문에서는 깊이 카메라를 이용한 사용자의 손 모양 인식 시스템을 제안한다. 특히, 본 시스템에서 이용된 손 모양 템플릿은 수화 언어 중 한국어를 채택 하였다. 손 모양 인식 시스템은 손의 특징 검출과 특징들을 이용한 손 인식으로 크게 2 단계의 작업으로 나눌 수 있다. 손의 특징으로는 손가락의 개수, 길이, 손바닥의 넓이 등이 있다. 특징을 추출하기 위해 본 논문에서는 거리 변환(Distance Transform)을 이용한 손의 뼈대 검출 방법을 제안한다. 이 방법을 사용하면 기존의 윤곽선(Contour)을 이용한 손가락 검출보다 정확도 측면에서 향상된다. 손 모양 인식으로 손의 특징을 이용하여 각 분기를 잘 나눌 수 있는 결정 트리(Decision Tree)를 사용한다. 사용자의 입력을 이용하면 분기값이 정확하게 나오지 못하므로 이 분기 값을 결정하기 위해 해당 분기마다 SVM을 이용하여 분기값을 결정하였다. 실험결과에서는 기존의 연구 방법보다 제안된 방법이 특징 추출과 인식하는데 있어 더욱 개선되었음을 보인다.

불완전한 데이터를 처리하기 위한 데이터 확장기법 (A data extension technique to handle incomplete data)

  • 이종찬
    • 한국융합학회논문지
    • /
    • 제12권2호
    • /
    • pp.7-13
    • /
    • 2021
  • 본 논문은 학습 데이터에 손실값을 포함하고 있는 불완전한 데이터를 위하여 확률을 나타낼 수 있는 형식으로 변환한 후 손실값을 보상하는 알고리즘을 소개한다. 기존에 이러한 데이터 변환을 사용한 방법에서는 손실 변수가 가질 수 있는 균등한 확률로 손실값을 할당하여 불완전한 데이터를 처리하는 것이었다. 이 방법으로 많은 문제에 적용하여 좋은 결과를 얻었으나, 손실 변수에 남아있는 모든 정보를 무시하고 새로운 값을 할당한다는 점에서 정보의 손실이 있다는 지적이 있었다. 이에 반해 새로운 제안 방법은 손실값을 포함하지 않는 완전한 정보만을 잘 알려진 분류 알고리즘(C4.5)에 입력하고 학습하는 중에 결정트리가 구축된다. 그리고 이 결정트리로 부터 손실값에 대한 확률을 구하여 이를 손실 변수의 추정값으로 할당한다. 즉, 불완전한 학습 데이터에서 손실되지 않은 많은 정보들을 사용하여 손실된 일부 정보를 복구하는 것이다.

Black-Box Classifier Interpretation Using Decision Tree and Fuzzy Logic-Based Classifier Implementation

  • Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권1호
    • /
    • pp.27-35
    • /
    • 2016
  • Black-box classifiers, such as artificial neural network and support vector machine, are a popular classifier because of its remarkable performance. They are applied in various fields such as inductive inferences, classifications, or regressions. However, by its characteristics, they cannot provide appropriate explanations how the classification results are derived. Therefore, there are plenty of actively discussed researches about interpreting trained black-box classifiers. In this paper, we propose a method to make a fuzzy logic-based classifier using extracted rules from the artificial neural network and support vector machine in order to interpret internal structures. As an object of classification, an anomalous propagation echo is selected which occurs frequently in radar data and becomes the problem in a precipitation estimation process. After applying a clustering method, learning dataset is generated from clusters. Using the learning dataset, artificial neural network and support vector machine are implemented. After that, decision trees for each classifier are generated. And they are used to implement simplified fuzzy logic-based classifiers by rule extraction and input selection. Finally, we can verify and compare performances. With actual occurrence cased of the anomalous propagation echo, we can determine the inner structures of the black-box classifiers.

구조적 특징기반 자유필기체 숫자인식 알고리즘 (A Recognition Algorithm of Handwritten Numerals based on Structure Features)

  • 송정영
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.151-156
    • /
    • 2018
  • 필기체 숫자인식은 일반적으로 높은 인식률과 문맥 독립이 요구되고 있고, 쓰는 사람에 따라서 많은 차이점이 있어서 자유 필기체 숫자는 인식이나 알고리즘작성에 아직도 어려운 문제점이 있다. 본 연구에서는, 필기체 숫자의 특성을 분석하고, 구조적 특징기반 자유 필기체 숫자인식 알고리즘을 새롭게 제안한다. 주어진 필기 숫자에 대하여, 끝점과 분기점, 수평선과 함께 숫자의 구조적 특징을 연구한다. 이 방법은 확장된 구조적 특징 알고리즘으로 제안되어 강인하며, 그리고 본 연구에서 제안한 구조적 특징에 기반 한 결정 트리(decision tree)는 필기체 숫자 자동인식방법에 구조적으로 기여한다. 본 알고리즘이 다른 방법과 비교하여 인식률과 강인성이 우수함을 실험결과로 보여주었다.

한글 요구사항 기반 결정 테이블로부터 테스트 케이스 생성을 위한 메타모델링 구축화 (Metamodeling Construction for Generating Test Case via Decision Table Based on Korean Requirement Specifications)

  • 장우성;문소영;김영철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권9호
    • /
    • pp.381-386
    • /
    • 2023
  • 기존의 다양한 테스트 케이스 생성에 대한 연구는 모델로부터 테스트 케이스를 추출한다. 하지만 실무의 경우 자연어 요구사항 문장으로부터 테스트 케이스를 생성할 수 있어야 한다. 이를 위해 자연어 문장의 분석하고, 분석 과정 및 결과를 요구공학 영역에 접목하는 연구는 매우 필요하다. 하지만 한국어 문장의 다양성 때문에, 한국어 자연어 요구사항 분석은 어려운 이슈이다. 우리는 한국어 자연어 요구사항으로부터 테스트 케이스 생성 연구 중 하나로써, 자연어 요구사항의 정의 분석, C3Tree 모델의 생성, 원인-결과 그래프의 생성, 결정 테이블의 생성 단계를 통한 테스트 케이스 생성 방법을 연구한다. 본 논문은 중단 단계로써, 메타모델링 변환 기법을 이용하여 C3Tree 모델 기반의 결정 테이블로부터 테스트 케이스 생성 방법을 제안한다. 이 방법은 모델 변환 규칙의 수정을 통해 모델 to 모델, 모델 to 텍스트로의 변환 과정을 제어한다. 모델이 변형되거나, 새로운 모델이 추가되더라도 프로그램 알고리즘의 직접적인 수정 없이 모델 변환 규칙을 유지보수 할 수 있다. 평가 결과, 결정 테이블에 대한 모든 조합이 테스트 케이스로 자동 생성되었다.

다수의 특징과 이진 분류 트리를 이용한 장면 전환 검출 (Shot Change Detection Using Multiple Features and Binary Decision Tree)

  • 홍승범;백중환
    • 한국통신학회논문지
    • /
    • 제28권5C호
    • /
    • pp.514-522
    • /
    • 2003
  • 본 논문에서는 다수의 특징과 이진 분류 트리를 이용하여 장면 전환점(shot change)을 검출하는 향상된 방식을 제안한다. 기존의 장면 전환점 검출 방식에서는 인접한 프레임간에 단일 특징과 고정된 임계값을 주로 사용하였다. 하지만, 비디오 시퀀스 내의 장면 전환점에서는 인접한 프레임간의 내용(content)인 컬러, 모양, 배경 혹은 질감 등이 동시에 변화한다. 따라서 본 논문에서는 단일 특징보다는 상호 보완 관계를 갖는 다수의 특징을 이용하여 장면 전환점을 효율적으로 검출한다. 그리고 장면 전환점의 분류를 위해서는 이진 분류 트리(binary classification tree)를 이용한다. 이 분류 결과에 따라 장면 전환점 검출에 사용될 중요한 특징들을 선별하고, 각 특징들의 최적 임계값을 구한다. 또한, 분류 성능을 확인하기 위해 교차검증(cross-validation)과 드롭 케이스(drop-case)를 수행하였다. 실험 결과, 제안된 기법이 단일 특징들만을 사용한 기존의 방법들 보다 El(Evaluated Index, 성능평가지수)에서 평균 2%의 성능이 향상됨을 알 수 있었다.