• Title/Summary/Keyword: Decision tree classifier

Search Result 107, Processing Time 0.023 seconds

Adaptive Vehicle License Plate Recognition System Using Projected Plane Convolution and Decision Tree Classifier (투영면 컨벌루션과 결정트리를 이용한 상태 적응적 차량번호판 인식 시스템)

  • Lee Eung-Joo;Lee Su Hyun;Kim Sung-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1496-1509
    • /
    • 2005
  • In this paper, an adaptive license plate recognition system which detects and recognizes license plate at real-time by using projected plane convolution and Decision Tree Classifier is proposed. And it was tested in circumstances which presence of complex background. Generally, in expressway tollgate or gateway of parking lots, it is very difficult to detect and segment license plate because of size, entry angle and noisy problem of vehicles due to CCD camera and road environment. In the proposed algorithm, we suggested to extract license plate candidate region after going through image acquisition process with inputted real-time image, and then to compensate license size as well as gradient of vehicle with change of vehicle entry position. The proposed algorithm can exactly detect license plate using accumulated edge, projected convolution and chain code labeling method. And it also segments letter of license plate using adaptive binary method. And then, it recognizes license plate letter by applying hybrid pattern vector method. Experimental results show that the proposed algorithm can recognize the front and rear direction license plate at real-time in the presence of complex background environments. Accordingly license plate detection rate displayed $98.8\%$ and $96.5\%$ successive rate respectively. And also, from the segmented letters, it shows $97.3\%$ and $96\%$ successive recognition rate respectively.

  • PDF

Improving the Accuracy of Document Classification by Learning Heterogeneity (이질성 학습을 통한 문서 분류의 정확성 향상 기법)

  • Wong, William Xiu Shun;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.21-44
    • /
    • 2018
  • In recent years, the rapid development of internet technology and the popularization of smart devices have resulted in massive amounts of text data. Those text data were produced and distributed through various media platforms such as World Wide Web, Internet news feeds, microblog, and social media. However, this enormous amount of easily obtained information is lack of organization. Therefore, this problem has raised the interest of many researchers in order to manage this huge amount of information. Further, this problem also required professionals that are capable of classifying relevant information and hence text classification is introduced. Text classification is a challenging task in modern data analysis, which it needs to assign a text document into one or more predefined categories or classes. In text classification field, there are different kinds of techniques available such as K-Nearest Neighbor, Naïve Bayes Algorithm, Support Vector Machine, Decision Tree, and Artificial Neural Network. However, while dealing with huge amount of text data, model performance and accuracy becomes a challenge. According to the type of words used in the corpus and type of features created for classification, the performance of a text classification model can be varied. Most of the attempts are been made based on proposing a new algorithm or modifying an existing algorithm. This kind of research can be said already reached their certain limitations for further improvements. In this study, aside from proposing a new algorithm or modifying the algorithm, we focus on searching a way to modify the use of data. It is widely known that classifier performance is influenced by the quality of training data upon which this classifier is built. The real world datasets in most of the time contain noise, or in other words noisy data, these can actually affect the decision made by the classifiers built from these data. In this study, we consider that the data from different domains, which is heterogeneous data might have the characteristics of noise which can be utilized in the classification process. In order to build the classifier, machine learning algorithm is performed based on the assumption that the characteristics of training data and target data are the same or very similar to each other. However, in the case of unstructured data such as text, the features are determined according to the vocabularies included in the document. If the viewpoints of the learning data and target data are different, the features may be appearing different between these two data. In this study, we attempt to improve the classification accuracy by strengthening the robustness of the document classifier through artificially injecting the noise into the process of constructing the document classifier. With data coming from various kind of sources, these data are likely formatted differently. These cause difficulties for traditional machine learning algorithms because they are not developed to recognize different type of data representation at one time and to put them together in same generalization. Therefore, in order to utilize heterogeneous data in the learning process of document classifier, we apply semi-supervised learning in our study. However, unlabeled data might have the possibility to degrade the performance of the document classifier. Therefore, we further proposed a method called Rule Selection-Based Ensemble Semi-Supervised Learning Algorithm (RSESLA) to select only the documents that contributing to the accuracy improvement of the classifier. RSESLA creates multiple views by manipulating the features using different types of classification models and different types of heterogeneous data. The most confident classification rules will be selected and applied for the final decision making. In this paper, three different types of real-world data sources were used, which are news, twitter and blogs.

One Channel Five-Way Classification Algorithm For Automatically Classifying Speech

  • Lee, Kyo-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3E
    • /
    • pp.12-21
    • /
    • 1998
  • In this paper, we describe the one channel five-way, V/U/M/N/S (Voice/Unvoice/Nasal/Silent), classification algorithm for automatically classifying speech. The decision making process is viewed as a pattern viewed as a pattern recognition problem. Two aspects of the algorithm are developed: feature selection and classifier type. The feature selection procedure is studied for identifying a set of features to make V/U/M/N/S classification. The classifiers used are a vector quantization (VQ), a neural network(NN), and a decision tree method. Actual five sentences spoken by six speakers, three male and three female, are tested with proposed classifiers. From a set of measurement tests, the proposed classifiers show fairly good accuracy for V/U/M/N/S decision.

  • PDF

Object Classification Method Using Dynamic Random Forests and Genetic Optimization

  • Kim, Jae Hyup;Kim, Hun Ki;Jang, Kyung Hyun;Lee, Jong Min;Moon, Young Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.79-89
    • /
    • 2016
  • In this paper, we proposed the object classification method using genetic and dynamic random forest consisting of optimal combination of unit tree. The random forest can ensure good generalization performance in combination of large amount of trees by assigning the randomization to the training samples and feature selection, etc. allocated to the decision tree as an ensemble classification model which combines with the unit decision tree based on the bagging. However, the random forest is composed of unit trees randomly, so it can show the excellent classification performance only when the sufficient amounts of trees are combined. There is no quantitative measurement method for the number of trees, and there is no choice but to repeat random tree structure continuously. The proposed algorithm is composed of random forest with a combination of optimal tree while maintaining the generalization performance of random forest. To achieve this, the problem of improving the classification performance was assigned to the optimization problem which found the optimal tree combination. For this end, the genetic algorithm methodology was applied. As a result of experiment, we had found out that the proposed algorithm could improve about 3~5% of classification performance in specific cases like common database and self infrared database compare with the existing random forest. In addition, we had shown that the optimal tree combination was decided at 55~60% level from the maximum trees.

Random Forest Classifier-based Ship Type Prediction with Limited Ship Information of AIS and V-Pass

  • Jeon, Ho-Kun;Han, Jae Rim
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.435-446
    • /
    • 2022
  • Identifying ship types is an important process to prevent illegal activities on territorial waters and assess marine traffic of Vessel Traffic Services Officer (VTSO). However, the Terrestrial Automatic Identification System (T-AIS) collected at the ground station has over 50% of vessels that do not contain the ship type information. Therefore, this study proposes a method of identifying ship types through the Random Forest Classifier (RFC) from dynamic and static data of AIS and V-Pass for one year and the Ulsan waters. With the hypothesis that six features, the speed, course, length, breadth, time, and location, enable to estimate of the ship type, four classification models were generated depending on length or breadth information since 81.9% of ships fully contain the two information. The accuracy were average 96.4% and 77.4% in the presence and absence of size information. The result shows that the proposed method is adaptable to identifying ship types.

Optimum Range Cutting for Packet Classification (최적화된 영역 분할을 이용한 패킷 분류 알고리즘)

  • Kim, Hyeong-Gee;Park, Kyong-Hye;Lim, Hye-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.6
    • /
    • pp.497-509
    • /
    • 2008
  • Various algorithms and architectures for efficient packet classification have been widely studied. Packet classification algorithms based on a decision tree structure such as HiCuts and HyperCuts are known to be the best by exploiting the geometrical representation of rules in a classifier. However, the algorithms are not practical since they involve complicated heuristics in selecting a dimension of cuts and determining the number of cuts at each node of the decision tree. Moreover, the cutting is not efficient enough since the cutting is based on regular interval which is not related to the actual range that each rule covers. In this paper, we proposed a new efficient packet classification algorithm using a range cutting. The proposed algorithm primarily finds out the ranges that each rule covers in 2-dimensional prefix plane and performs cutting according to the ranges. Hence, the proposed algorithm constructs a very efficient decision tree. The cutting applied to each node of the decision tree is optimal and deterministic not involving the complicated heuristics. Simulation results for rule sets generated using class-bench databases show that the proposed algorithm has better performance in average search speed and consumes up to 3-300 times less memory space compared with previous cutting algorithms.

A Framework for Semantic Interpretation of Noun Compounds Using Tratz Model and Binary Features

  • Zaeri, Ahmad;Nematbakhsh, Mohammad Ali
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.743-752
    • /
    • 2012
  • Semantic interpretation of the relationship between noun compound (NC) elements has been a challenging issue due to the lack of contextual information, the unbounded number of combinations, and the absence of a universally accepted system for the categorization. The current models require a huge corpus of data to extract contextual information, which limits their usage in many situations. In this paper, a new semantic relations interpreter for NCs based on novel lightweight binary features is proposed. Some of the binary features used are novel. In addition, the interpreter uses a new feature selection method. By developing these new features and techniques, the proposed method removes the need for any huge corpuses. Implementing this method using a modular and plugin-based framework, and by training it using the largest and the most current fine-grained data set, shows that the accuracy is better than that of previously reported upon methods that utilize large corpuses. This improvement in accuracy and the provision of superior efficiency is achieved not only by improving the old features with such techniques as semantic scattering and sense collocation, but also by using various novel features and classifier max entropy. That the accuracy of the max entropy classifier is higher compared to that of other classifiers, such as a support vector machine, a Na$\ddot{i}$ve Bayes, and a decision tree, is also shown.

Study of Machine-Learning Classifier and Feature Set Selection for Intent Classification of Korean Tweets about Food Safety

  • Yeom, Ha-Neul;Hwang, Myunggwon;Hwang, Mi-Nyeong;Jung, Hanmin
    • Journal of Information Science Theory and Practice
    • /
    • v.2 no.3
    • /
    • pp.29-39
    • /
    • 2014
  • In recent years, several studies have proposed making use of the Twitter micro-blogging service to track various trends in online media and discussion. In this study, we specifically examine the use of Twitter to track discussions of food safety in the Korean language. Given the irregularity of keyword use in most tweets, we focus on optimistic machine-learning and feature set selection to classify collected tweets. We build the classifier model using Naive Bayes & Naive Bayes Multinomial, Support Vector Machine, and Decision Tree Algorithms, all of which show good performance. To select an optimum feature set, we construct a basic feature set as a standard for performance comparison, so that further test feature sets can be evaluated. Experiments show that precision and F-measure performance are best when using a Naive Bayes Multinomial classifier model with a test feature set defined by extracting Substantive, Predicate, Modifier, and Interjection parts of speech.

Recognizing User Engagement and Intentions based on the Annotations of an Interaction Video (상호작용 영상 주석 기반 사용자 참여도 및 의도 인식)

  • Jang, Minsu;Park, Cheonshu;Lee, Dae-Ha;Kim, Jaehong;Cho, Young-Jo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.612-618
    • /
    • 2014
  • A pattern classifier-based approach for recognizing internal states of human participants in interactions is presented along with its experimental results. The approach includes a step for collecting video recordings of human-human interactions or humanrobot interactions and subsequently analyzing the videos based on human coded annotations. The annotation includes social signals directly observed in the video recordings and the internal states of human participants indirectly inferred from those observed social signals. Then, a pattern classifier is trained using the annotation data, and tested. In our experiments on human-robot interaction, 7 video recordings were collected and annotated with 20 social signals and 7 internal states. Several experiments were performed to obtain an 84.83% recall rate for interaction engagement, 93% for concentration intention, and 81% for task comprehension level using a C4.5 based decision tree classifier.

Differentiation among stability regimes of alumina-water nanofluids using smart classifiers

  • Daryayehsalameh, Bahador;Ayari, Mohamed Arselene;Tounsi, Abdelouahed;Khandakar, Amith;Vaferi, Behzad
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.489-499
    • /
    • 2022
  • Nanofluids have recently triggered a substantial scientific interest as cooling media. However, their stability is challenging for successful engagement in industrial applications. Different factors, including temperature, nanoparticles and base fluids characteristics, pH, ultrasonic power and frequency, agitation time, and surfactant type and concentration, determine the nanofluid stability regime. Indeed, it is often too complicated and even impossible to accurately find the conditions resulting in a stabilized nanofluid. Furthermore, there are no empirical, semi-empirical, and even intelligent scenarios for anticipating the stability of nanofluids. Therefore, this study introduces a straightforward and reliable intelligent classifier for discriminating among the stability regimes of alumina-water nanofluids based on the Zeta potential margins. In this regard, various intelligent classifiers (i.e., deep learning and multilayer perceptron neural network, decision tree, GoogleNet, and multi-output least squares support vector regression) have been designed, and their classification accuracy was compared. This comparison approved that the multilayer perceptron neural network (MLPNN) with the SoftMax activation function trained by the Bayesian regularization algorithm is the best classifier for the considered task. This intelligent classifier accurately detects the stability regimes of more than 90% of 345 different nanofluid samples. The overall classification accuracy and misclassification percent of 90.1% and 9.9% have been achieved by this model. This research is the first try toward anticipting the stability of water-alumin nanofluids from some easily measured independent variables.