• Title/Summary/Keyword: Decision tree algorithm

Search Result 452, Processing Time 0.027 seconds

A Decision Tree Induction using Genetic Programming with Sequentially Selected Features (순차적으로 선택된 특성과 유전 프로그래밍을 이용한 결정나무)

  • Kim Hyo-Jung;Park Chong-Sun
    • Korean Management Science Review
    • /
    • v.23 no.1
    • /
    • pp.63-74
    • /
    • 2006
  • Decision tree induction algorithm is one of the most widely used methods in classification problems. However, they could be trapped into a local minimum and have no reasonable means to escape from it if tree algorithm uses top-down search algorithm. Further, if irrelevant or redundant features are included in the data set, tree algorithms produces trees that are less accurate than those from the data set with only relevant features. We propose a hybrid algorithm to generate decision tree that uses genetic programming with sequentially selected features. Correlation-based Feature Selection (CFS) method is adopted to find relevant features which are fed to genetic programming sequentially to find optimal trees at each iteration. The new proposed algorithm produce simpler and more understandable decision trees as compared with other decision trees and it is also effective in producing similar or better trees with relatively smaller set of features in the view of cross-validation accuracy.

Evaluation Method of College English Education Effect Based on Improved Decision Tree Algorithm

  • Dou, Fang
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.500-509
    • /
    • 2022
  • With the rapid development of educational informatization, teaching methods become diversified characteristics, but a large number of information data restrict the evaluation on teaching subject and object in terms of the effect of English education. Therefore, this study adopts the concept of incremental learning and eigenvalue interval algorithm to improve the weighted decision tree, and builds an English education effect evaluation model based on association rules. According to the results, the average accuracy of information classification of the improved decision tree algorithm is 96.18%, the classification error rate can be as low as 0.02%, and the anti-fitting performance is good. The classification error rate between the improved decision tree algorithm and the original decision tree does not exceed 1%. The proposed educational evaluation method can effectively provide early warning of academic situation analysis, and improve the teachers' professional skills in an accelerated manner and perfect the education system.

DESIGN OF A BINARY DECISION TREE FOR RECOGNITION OF THE DEFECT PATTERNS OF COLD MILL STRIP USING GENETIC ALGORITHM

  • Lee, Byung-Jin;Kyoung Lyou;Park, Gwi-Tae;Kim, Kyoung-Min
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.208-212
    • /
    • 1998
  • This paper suggests the method to recognize the various defect patterns of cold mill strip using binary decision tree constructed by genetic algorithm automatically. In case of classifying the complex the complex patterns with high similarity like the defect patterns of cold mill strip, the selection of the optimal feature set and the structure of recognizer is important for high recognition rate. In this paper genetic algorithm is used to select a subset of the suitable features at each node in binary decision tree. The feature subset of maximum fitness is chosen and the patterns are classified into two classes by linear decision function. After this process is repeated at each node until all the patterns are classified respectively into individual classes. In this way , binary decision tree classifier is constructed automatically. After construction binary decision tree, the final recognizer is accomplished by the learning process of neural network using a set of standard p tterns at each node. In this paper, binary decision tree classifier is applied to recognition of the defect patterns of cold mill strip and the experimental results are given to show the usefulness of the proposed scheme.

  • PDF

Improved Decision Tree Algorithms by Considering Variables Interaction (교호효과를 고려한 향상된 의사결정나무 알고리듬에 관한 연구)

  • Kwon, Keunseob;Choi, Gyunghyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.4
    • /
    • pp.267-276
    • /
    • 2004
  • Much of previous attention on researches of the decision tree focuses on the splitting criteria and optimization of tree size. Nowadays the quantity of the data increase and relation of variables becomes very complex. And hence, this comes to have plenty number of unnecessary node and leaf. Consequently the confidence of the explanation and forecasting of the decision tree falls off. In this research report, we propose some decision tree algorithms considering the interaction of predictor variables. A generic algorithm, the k-1 Algorithm, dealing with the interaction with a combination of all predictor variable is presented. And then, the extended version k-k Algorithm which considers with the interaction every k-depth with a combination of some predictor variables. Also, we present an improved algorithm by introducing control parameter to the algorithms. The algorithms are tested by real field credit card data, census data, bank data, etc.

Optimization of Decision Tree for Classification Using a Particle Swarm

  • Cho, Yun-Ju;Lee, Hye-Seon;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.4
    • /
    • pp.272-278
    • /
    • 2011
  • Decision tree as a classification tool is being used successfully in many areas such as medical diagnosis, customer churn prediction, signal detection and so on. The main advantage of decision tree classifiers is their capability to break down a complex structure into a collection of simpler structures, thus providing a solution that is easy to interpret. Since decision tree is a top-down algorithm using a divide and conquer induction process, there is a risk of reaching a local optimal solution. This paper proposes a procedure of optimally determining thresholds of the chosen variables for a decision tree using an adaptive particle swarm optimization (APSO). The proposed algorithm consists of two phases. First, we construct a decision tree and choose the relevant variables. Second, we find the optimum thresholds simultaneously using an APSO for those selected variables. To validate the proposed algorithm, several artificial and real datasets are used. We compare our results with the original CART results and show that the proposed algorithm is promising for improving prediction accuracy.

Learning Algorithm for Multiple Distribution Data using Haar-like Feature and Decision Tree (다중 분포 학습 모델을 위한 Haar-like Feature와 Decision Tree를 이용한 학습 알고리즘)

  • Kwak, Ju-Hyun;Woen, Il-Young;Lee, Chang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • Adaboost is widely used for Haar-like feature boosting algorithm in Face Detection. It shows very effective performance on single distribution model. But when detecting front and side face images at same time, Adaboost shows it's limitation on multiple distribution data because it uses linear combination of basic classifier. This paper suggest the HDCT, modified decision tree algorithm for Haar-like features. We still tested the performance of HDCT compared with Adaboost on multiple distributed image recognition.

Design of a binary decision tree using genetic algorithm for recognition of the defect patterns of cold mill strip (유전 알고리듬을 이용한 이진 트리 분류기의 설계와 냉연 흠 분류에의 적용)

  • Kim, Kyoung-Min;Lee, Byung-Jin;Lyou, Kyoung;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.98-103
    • /
    • 2000
  • This paper suggests a method to recognize the various defect patterns of a cold mill strip using a binary decision tree automatically constructed by a genetic algorithm(GA). In classifying complex patterns with high similarity like the defect patterns of a cold mill stirp, the selection of an optimal feature set and an appropriate recognizer is important to achieve high recognition rate. In this paper a GA is used to select a subset of the suitable features at each node in the binary decision tree. The feature subset with maximum fitness is chosen and the patterns are classified into two classes using a linear decision function. This process is repeated at each node until all the patterns are classified into individual classes. In this way, the classifier using the binary decision tree is constructed automatically. After constructing the binary decision tree, the final recognizer is accomplished by having neural network learning sits of standard patterns at each node. In this paper, the classifier using the binary decision tree is applied to the recognition of defect patterns of a cold mill strip, and the experimental results are given to demonstrate the usefulness of the proposed scheme.

  • PDF

Adaptive Decision Tree Algorithm for Machine Diagnosis (기계 진단을 위한 적응형 의사결정 트리 알고리즘)

  • 백준걸;김강호;김창욱;김성식
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.235-238
    • /
    • 2000
  • This article presents an adaptive decision tree algorithm for dynamically reasoning machine failure cause out of real-time, large-scale machine status database. On the basis of experiment using semiconductor etching machine, it has been verified that our model outperforms previously proposed decision tree models.

  • PDF

Ensemble of Fuzzy Decision Tree for Efficient Indoor Space Recognition

  • Kim, Kisang;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.4
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, we expand the process of classification to an ensemble of fuzzy decision tree. For indoor space recognition, many research use Boosted Tree, consists of Adaboost and decision tree. The Boosted Tree extracts an optimal decision tree in stages. On each stage, Boosted Tree extracts the good decision tree by minimizing the weighted error of classification. This decision tree performs a hard decision. In most case, hard decision offer some error when they classify nearby a dividing point. Therefore, We suggest an ensemble of fuzzy decision tree, which offer some flexibility to the Boosted Tree algorithm as well as a high performance. In experimental results, we evaluate that the accuracy of suggested methods improved about 13% than the traditional one.

Adaptive Decision Tree Algorithm for Data Mining in Real-Time Machine Status Database (실시간 기계 상태 데이터베이스에서 데이터 마이닝을 위한 적응형 의사결정 트리 알고리듬)

  • Baek, Jun-Geol;Kim, Kang-Ho;Kim, Sung-Shick;Kim, Chang-Ouk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.2
    • /
    • pp.171-182
    • /
    • 2000
  • For the last five years, data mining has drawn much attention by researchers and practitioners because of its many applicable domains. This article presents an adaptive decision tree algorithm for dynamically reasoning machine failure cause out of real-time, large-scale machine status database. Among many data mining methods, intelligent decision tree building algorithm is especially of interest in the sense that it enables the automatic generation of decision rules from the tree, facilitating the construction of expert system. On the basis of experiment using semiconductor etching machine, it has been verified that our model outperforms previously proposed decision tree models.

  • PDF