• Title/Summary/Keyword: Decellularized matrices

Search Result 3, Processing Time 0.018 seconds

Decellularized Matrices for the Treatment of Tissue Defects: from Matrix Origin to Immunological Mechanisms

  • Xinyue Wang;Jiqiang Guo;Qing Yu;Luyao Zhao;Xiang Gao;Li Wang;Meiling Wen;Junrong Yan;Meiwen An;Yang Liu
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.509-522
    • /
    • 2024
  • Decellularized matrix transplantation has emerged as a promising therapeutic approach for repairing tissue defects, with numerous studies assessing its safety and efficacy in both animal models and clinical settings. The host immune response elicited by decellularized matrix grafts of natural biological origin plays a crucial role in determining the success of tissue repair, influenced by matrix heterogeneity and the inflammatory microenvironment of the wound. However, the specific immunologic mechanisms underlying the interaction between decellularized matrix grafts and the host immune system remain elusive. This article reviews the sources of decellularized matrices, available decellularization techniques, and residual immunogenic components. It focuses on the host immune response following decellularized matrix transplantation, with emphasis on the key mechanisms of Toll-like receptor, T-cell receptor, and TGF-β/SMAD signaling in the stages of post-transplantation immunorecognition, immunomodulation, and tissue repair, respectively. Furthermore, it highlights the innovative roles of TLR10 and miR-29a-3p in improving transplantation outcomes. An in-depth understanding of the molecular mechanisms underlying the host immune response after decellularized matrix transplantation provides new directions for the repair of tissue defects.

Anti-calcification Effects in Decellularized and Variously Fixed Bovine Pericardium (소심낭 절편의 무세포화와 알코올 전처치를 포함한 여러 고정 처리법 시행 후 석회화 경감 효과 관찰 연구)

  • Hwang, Seong-Wook;Kim, Yong-Jin;Kim, Soo-Hwan;Choi, Seung-Hwa
    • Journal of Chest Surgery
    • /
    • v.43 no.3
    • /
    • pp.235-245
    • /
    • 2010
  • Background: Our goal was to evaluate anti-calcification effects of decellularization and diverse fixing methods including preincubation of the bovine pericardium with ethanol. We also assessed changes in mechanical properties. Material and Method: Harvested bovine pericardium was decellularized with 0.25% sodim dodecysulfate and then treated with 5 methods of fixation: (1) 0.5% glutaraldehyde (GA) for 14 days, (2) 0.5% GA for 5 days, 2% GA for 2 days and 0.25% GA for 7 days, (3) 0.5% GA for 5 days, 2% GA for 2 days, 0.25% GA for 7 days, and then 70% ethanol for 2 days, (4) 0.5% GA for 5 days, a mixture of 2% GA and 70% ethanol for 2 days, and 0.25% GA for 7 days, (5) 0.5% GA for 5 days, a mixture of 2% GA, 65% ethanol, and 5% octanediol for 2 days and then 0.25% GA for 7 days. All treated bovine pericardia were tested for histological variables, lipid content, and mechanical properties including tensile strength and thermal stability. A total 10 kinds of differently treated bovine pericardia were implanted into rat subdermis and harvested 8 weeks later. Harvested pericardia were evaluated for calcium content. Result: No protein denaturation was observed microscopically after decellularization. There was a 32% mean decrease in tensile strength index after decellularization in the bovine pericardium group fixed. Octanediol preincubation attenuated the decrease in tensile strength and maintained thermal stability. TG and cholesterol were not affected by decellularization but were decreased by organic solvent. Calcium content was decreased after decellularization, and organic solvent preincubation decreased calcification in the non-decellularized bovine pericardium group. Conclusion: Decellularization and organic solvent preincubation have anti-calcification effects but decellularization may cause mechanical instability. A method of decellularization and fixation that does not cause damage to matrices will be needed for evaluation of the next step in using tissue-engineering for replacement of cardiac valves.

The in vitro analysis of migration and polarity of blastema cells in the extracellular matrix derived from bovine mesenteric in the presence of fibronectin

  • Kamelia Kohannezhad;Soroush Norouzi;Maryam Tafazoli;Safoura Soleymani;Nasser Mahdavi Shahri;Amin Tavassoli
    • Anatomy and Cell Biology
    • /
    • v.55 no.2
    • /
    • pp.229-238
    • /
    • 2022
  • Cell migration is an essential process in embryonic development, wound healing, and pathological conditions. Our knowledge of cell migration is often based on the two dimentional evaluation of cell movement, which usually differs from what occurred in vivo. In this study, we investigated cellular migration from blastema tissue toward bovine decellularized mesentery tissue. In this regard, fibronectin (FN) was assessed to confirm cell migration. Therefore, we established a cell migration model using blastema cells migration toward the extracellular matrix derived from bovine mesenteric tissue. A physiochemical decellularization method was utilized based on freeze-thaw cycles and agitation in sodium dodecyl sulfate and Triton X-100 to remove cells from the extracellular matrix (ECM) of bovine mesenteric tissue. These types of matrices were assembled by the rings of blastema tissues originated from the of New Zealand rabbits pinna and cultured in a medium containing FN in different days in vitro, and then they are histologically evaluated, and the expression of the Tenascin C gene is analyzed. By means of tissue staining and after confirmation of the cell removal from mesenteric tissue, polarity, and migration of blastema cells was observed in the interaction site with this matrix. Also, the expression of the Tenascin C gene was assessed on days 15 and 21 following the cell culture process. The results showed that the three dimentional model of cellular migration of blastema cells along with the ECM could be a suitable model for investigating cell behaviors, such as polarity and cell migration in vitro.