• Title/Summary/Keyword: Deceleration Time

Search Result 196, Processing Time 0.025 seconds

A study on elevator control using micro-processor (Micro-processor를 이용한 엘리베이터 제어에 관한 연구)

  • 김성종;위환;신동용;한후석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.418-421
    • /
    • 1988
  • Elevator system requires position and speed control at the same time recently. The control device of existing Elevator system making hardware is simplified by using micro-processor that have been developed. In this papers, it consists of contactless logic circuit using miro-processor and digital components. This paper shows that as this system control voltage and frequency using PWM inverter at the same time, speed control is accurate, acceleration and deceleration is soft and passengers can be feel comfortably because speed change is a little during driving.

  • PDF

Methodology for Calculating Surrogate Safety Measure by Using Vehicular Trajectory and Its Application (차량궤적자료를 이용한 SSM 산출 방법론 개발과 적용사례 분석)

  • PARK, Seongyong;LEE, Chungwon;KHO, Seung-Young;LEE, Yong-Gwan
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.323-336
    • /
    • 2015
  • Estimating the risks on the roadway using surrogate safety measures (SSM) has an advantage in that it focuses on the vehicle trajectory directly involved in conflicts. On the other hand, there is a restriction on estimating the risks of continuous segments due to the limited data collected from a location. To overcome the restriction, this study presents the scheme of acquiring the vehicular trajectory using real time kinematics-differential global positioning system (RTK-DGPS) and develops a methodology which contains the considerations of the problems to calculate the SSM such as time-to-collision (TTC), deceleration rate to avoid collision (DRAC) and acceleration noise (AN). By using the methodology, this study shows a result from an experiment executed in a section where the variation of vehicular movement can be observed from several continuous flow roadway sections near Seoul and Gyeonggi Province in Korea. The result illustrated the risks on the roadway by the SSM metrics in certain situations like merging and diverging, stop-and-go, and weaving. This study would be applied to relate the dangers with characteristics of drivers and roadway sections, and prevenst accidents or conflicts by detecting dangerous roadway sections and drivers' behaviors. This study contributes to improving roadway safety and reducing car-accidents.

Control for Seek Time Reduction in Disk Drives (디스크 드라이브의 탐색시간 단축제어)

  • Kang, Chang-Ik;Chu, Sang-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.104-112
    • /
    • 2002
  • Controllers for acoustic noise reduction in disk drives have been developed but they have slower seek time performance than time-optimal controllers. We propose a new seek servo controller that has acoustic noise reduction benefit and faster seek time performance than conventional controllers. The proposed controller is designed to make sure that head is moved with maximized acceleration and deceleration under the voltage limitation imposed on head-positioning motor and so it provides faster seek time than conventional controllers designed by considering the current limitation. The experimental results using a commercially available disk drive confirm that the use of the proposed controller results in foster seek time than conventional controllers for acoustic noise reduction.

Kinematics of Bimanual Complementary Movement in Stroke Patients (뇌졸중 환자에서 양손 보완운동의 운동형상학)

  • Kim, Taehoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.342-349
    • /
    • 2015
  • The objective of this study was to compare the unimanual and bimanual complementary movements of the affected upper extremity. Thirty participants living in Busan area with post-stroke hemiparesis were involved in this study. They were selected according to twelve criteria. We used the Fitmeter accelerometer to measure Signal Vector Magnitude, peak acceleration and peak deceleration. The movement time and Signal Vector Magnitude of bimanual complementary movement were less than those of unimanual movement(p<0.05). Therefore, we suggest that bimanual complementary movement is more useful, as for the kinematic aspect, than unimanual movement when a person with stroke perform activities of daily living.

Anti-sway and Position 3D Control of the Nonlinear Crane System using Fuzzy Algorithm

  • Lee, Tae-Young;Lee, Sang-Ryong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.66-75
    • /
    • 2002
  • The crane operation used fur transporting heavy loads causes a swinging motion with the loads due to the crane\`s acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and can cause serious damage. Ideally, the purpose of a crane system is to transport loads to a goal position as soon as possible without any oscillation of the rope. Currently, cranes are generally operated based on expert knowledge alone, accordingly, the development of a satisfactory control method that can efficiently suppress object sway during transport is essential. The dynamic behavior of a crane shows nonlinear characteristics. When the length of the rope is changed, a crane becomes a time-varying system thus the design of an anti-sway controller is very difficult. In this paper, a nonlinear dynamic model is derived for an industrial overhead crane whose girder, trolley, and hoister move simultaneously. Furthermore, a fuzzy logic controller, based on expert experiments during acceleration, constant velocity, deceleration, and stop position periods is proposed to suppress the swing motion and control the position of the crane. Computer simulation is then used to test the performance of the fuzzy controller with the nonlinear crane model.

Anti-sway and 3D position Control of the Nonlinear Crane System using Fuzzy Algorithm (퍼지 알고리즘을 이용한 비선형 크레인 시스템의 진동방지 및 3차원 위치제어)

  • Lee, Tae-Young;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.193-202
    • /
    • 1999
  • Crane operation for transporting heavy loads causes swinging motion at the loads due to crane's acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and leads to possibility of serious damages. So, this swing of the objects is a serious problem and the goal of crane system is transporting to a goal position as soon as possible without the oscillation of the rope. Generally crane is operated by expert's knowledge. Therefore, a satisfactory control method to supress object sway during transport is indispensible. The dynamic behavior of the crane shows nonlinear characteristics. when the length of the rope is changed the crane is time varying system and the design of anti-sway controller is very difficult. In this paper, the nonlinear dynamic model for the industrial overhead crane whose girder, trolley and hoister move simultaneously is derived. and the Fuzzy logic controller based on the expert experiments during acceleration, constant velocity, deceleration and stop position period is proposed to supress the swing motion and control the position of the crane. The performance of the fuzzy controller for the nonlinear crane model is simulated on the personal computer.

  • PDF

Anti-swing of the Nonlinear Overhead Crane Using Partial State Feedback Control (부분상태 궤환제어를 이용한 비선형 천정크레인의 진자각제어)

  • Lee, Jong-Kyu;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.907-917
    • /
    • 1997
  • The purpose of this study is to design an anti-sway motion for industrial overhead cranes which transport objects on a horizontal plane by adjusting movements of a trolley motor and a girder motor. The movement of a hoist motor has not been considered at this time since its role was assumed to move objects only vertically, therefore, not to affect the swing motion of objects. The dynamic behavior of the swing motion shows nonlinear characteristics, which makes the design of anti-sway motion controller difficult. First of all, the nonlinear state equation for the motion of industrial overhead cranes has been derived. Then they have been linearized about normal operating states determined by the dynamic characteristics of motor motion-acceleration, constant speed, and deceleration, and deceleration, during transportation. The partial state feedback control algorithm based on this linearized state equation has been developed on order to suppress the swing motion. The simulation results have demonstrated satisfactory performance of the proposed controller.

The Implement of 2-Step Motion Control Loop and Look Ahead Algorithm for a High Speed Machining (고속가공을 위한 2단계 모션 제어 루프와 선독 알고리즘의 구현)

  • 이철수;이제필
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.71-81
    • /
    • 2000
  • This paper describers a look ahead algorithm of PC-NC(personal computer numerical control). The algorithm is based on acceleration/deceleration before interpolation which doesn\`t include a command error and determines a feedrate value at the end point of each block(or start point of each block). The algorithm is represented as following; 1) calculating two maximum arrival feedrates(F$_1$,F$_2$) by an acceleration value, a command feedrate, and the distance of a NC block, 2) getting a tangent feedrate (F$_3$) of the adjacent blocks, 3) choosing a minimum value among these three feedrates, and 4) setting the value to a feedrate of a start point of the next block(or a end point of the previous block). The proposed look ahead algorithm was implemented and tested by using a commercial TROS(real time operation system) on the MS-Windows NT 4.0 in a PC platform. For interfacing to a machine, a counter board, a DAC board and a DIO board were used. The result of the algorithm increased a machining precision and a machining speed in many short blocks.

  • PDF

Flow Characteristics of a Turbulent Pulsating Flow in a Straight Duct Connected to a Curved Duct by using an LDV (LDV에 의한 곡관 후류에 연결된 직관에서 난류맥동유동의 유동특성)

  • 손현철;이행남;박길문
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.177-186
    • /
    • 2003
  • In the present study, the flow characteristics of developing turbulent flows are investigated at the exit region of a square cross-sectional 180" curved duct with dimensions of 40mm$\times$40mm$\times$4000mm (height $\times$ width $\times$length). Smoke particles produced from mosquito coils were used as seed particles for the LDV measurement. Experiments were carried out to measure axial velocity profiles, shear stress distributions and entrance lengths by using an LDV system and Rotating Machinery Resolver RMR with PHASE software. Experimental results clearly show that the time-averaged Reynolds number does not affect oscillatory flow characteristics because the turbulent components tend to balance the oscillatory components in the fully developed flow region. Also, the velocity profiles are in good agreement with 1/7power law such as the results of steady turbulent flows. The turbulent intensity linearly increases along the walls and is slightly higher, especially in the period of deceleration. On the other hand, the LDV measurements show that shear stress values in slightly higher in the period of deceleration due to the flow characteristics in the exit region. The entrance length where flows become stable appears at the point that is 40 times the length of hydraulic diameter.eter.

A Study on the Selection of Train Operation Mode Minimizing the Running Energy Consumption (전동열차 운행에너지를 최소화 하는 운전모드 결정)

  • Kim, Yong-Hyun;Kim, Dong-Hwan;Kim, Chi-Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.38-48
    • /
    • 2007
  • this paper analyses how much acceleration and deceleration of urban rail vehicle should be applied and how to choose an operation mode to minimize energy consumption when train runs between stations within the fixed operation time. The decided operation pattern satisfying the minimum energy consumption becomes a target trajectory and a basis for the controller design criteria. To make this goal it grasps the characteristics of urban rail vehicle, realize operation energy model of urban rail vehicle and verity the accuracy of embodied model the Matlab simulation with the same operation result of real route. It searches for operation pattern to minimize operation energy by changing the acceleration and deceleration on the imaginative route and proposes operation pattern minimizing energy consumption by applying real operation data between stations of Seoul Metropolitan Subway Line 6.