• 제목/요약/키워드: Decay processes

검색결과 108건 처리시간 0.028초

UNIX의 Decay Usage 알고리즘에서의 지연시간-사용량 정규화 특성 분석 (Analysis of Delay-Bandwidth Normalization Characteristic in Decay Usage Algorithm of UNIX)

  • 박경호;황호영;이창건;민상렬
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제34권10호
    • /
    • pp.511-520
    • /
    • 2007
  • Decay usage 알고리즘은 CPU를 최근에 적게 사용한 프로세스를 우선시하는 스케줄링 방법으로, UNIX와 같이 계산 위주의 프로세스와 대화형 프로세스가 혼재한 시분할 시스템에서 널리 사용되어 왔다. 하지만, decay usage의 매개변수들이 어떻게 상호작용하며 결국 어떤 서비스 행태를 보이는 지에 대한 분명한 이해가 없었다. 본 논문에서는 decay usage가 사용하는 매개변수들의 상호작용에 따라 서비스의 사용량 및 지연시간이 보이는 행태를 실험적으로 분석한다. 이러한 실험적 분석을 바탕으로, 각 매개 변수가 가지는 의미를 서비스 제공의 관점에서 규명한다. 본 논문의 분석 결과는 decay usage의 매개변수들을 조정하여 응용의 요구에 맞는 서비스를 제공하기 위한 기반이 된다.

Effect of Degradation Processes on Optimal Remediation Design Sorption and First-Order Decay Rate

  • Park, Dong-Kyu;Ko, Nak-Youl;Lee, Kang-Kun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.503-508
    • /
    • 2004
  • Optimal remediation design using the pump and treat(P&T) method and natural attenuation was accomplished in consideration for degradation processes, such as sorption and first-order decay rate. Variation of both sorption and first-order decay rate has influence on design of optimal remediation application. When sorption effect increases, the more pumping rate and pumping wells are required. The location of operated wells is on the centerline of contaminant plume and wells near hot spot are mainly operated when sorption effect increases. The higher of first-order decay rate, the less pumping rate is required. These results show that the degradation processes have to be considered as one of the essential factors for optimal remediation design.

  • PDF

Theoretical Study of Auger Recombination of Excitons in Monolayer Transition-metal Dichalcogenides

  • Lee, Hyun Cheol
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1735-1743
    • /
    • 2018
  • Excitons are the most prominent features of the optical properties of monolayer transition-metal dichalcogenides(TMDC). In view of optoelectronics it is very important to understand the decay mechanisms of the excitons of these materials. Auger recombination of excitons are regarded as one of the dominant decay processes. In this paper the Auger constant of recombination is computed based on the approach proposed by Kavoulakis and Baym. We obtain both temperature dependent (from type A, A' processes) and temperature independent (from type B, B' processes) contributions, and a numerical estimate of theoretical result yields the value of constant in the order of $10^{-2}cm^2s^{-1}$, being consistent with existing experimental data. This implies that Auger decay processes severely limit the photoluminescence yield of TMDC-based optoelectronic devices.

전자빔 조사 폴리머의 전자 분포의 축퇴 과정 (Decay Process of Charge Distribution in E-beam Irradiated Polymers)

  • 최용성;김형곤;황종선;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 논문집 센서 박막재료연구회 및 광주 전남지부
    • /
    • pp.69-72
    • /
    • 2008
  • Decay processes of accumulated charge in e-beam irradiated polymers during elevating temperature are observed using pulsed electro-acoustic measurement system. Since the polymeric materials have many superior properties such as light-weight, good mechanical strength, high flexibility and low cost, they are inevitable materials for spacecrafts. In space environment, however, the polymers sometimes have serious damage by irradiation of high energy charged particles. When the polymers of the spacecraft are irradiated by high energy charged particles, some of injected charges accumulate and remain for long time in the bulk of the polymers. Since the bulk charges sometimes cause the degradation or breakdown of the materials, the investigation of the charging and the decay processes in polymeric materials under change of temperature is important to decide an adequate material for the spacecrafts. By measuring the charge behavior in e-beam irradiated polymer, such as polyimide or polystyrene, it is found that the various accumulation and decay patterns are observed in each material. The results seem to be useful and be helpful to progress in the reliability of the polymers for the spacecraft.

  • PDF

E-빔 조사된 폴리머의 전하 분포의 축퇴 과정 (Decay Process of Charge Distribution in E-Beam Irradiated Polymers)

  • 윤주호;최용성;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.329-330
    • /
    • 2007
  • Decay processes of accumulated charge in e-beam irradiated polymers during elevating temperature are observed using pulsed electro-acoustic measurement system. Since the polymeric materials have many superior properties such as light-weight, good mechanical strength, high flexibility and low cost, they are inevitable materials for spacecrafts. In space environment, however, the polymers sometimes have serious damage by irradiation of high energy charged particles. When the polymers of the spacecraft are irradiated by high energy charged particles, some of injected charges accumulate and remain for long time in the bulk of the polymers. Since the bulk charges sometimes cause the degradation or breakdown of the materials, the investigation of the charging and the decay processes in polymeric materials under change of temperature is important to decide an adequate material for the spacecrafts. By measuring the charge behavior in e-beam irradiated polymer, such as polyimide or polystyrene, it is found that the various accumulation and decay patterns are observed in each material. The results seem to be useful and be helpful to progress in the reliability of the polymers for the spacecraft.

  • PDF

이변량 감소모델을 적용한 배급수관망에서의 잔류염소농도 예측 및 이의 활용 (Prediction of residual chlorine using two-component second-order decay model in water distribution network)

  • 김영효;권지향;김두일
    • 상하수도학회지
    • /
    • 제28권3호
    • /
    • pp.287-297
    • /
    • 2014
  • It is important to predict chlorine decay with different water purification processes and distribution pipeline materials, especially because chlorine decay is in direct relationship with the stability of water quality. The degree of chlorine decay may affect the water quality at the end of the pipeline: it may produce disinfection by-products or cause unpleasant odor and taste. Sand filtrate and dual media filtrate were used as influents in this study, and cast iron (CI), polyvinyl chloride (PVC), and stainless steel (SS) were used as pipeline materials. The results were analyzed via chlorine decay models by comparing the experimental and model parameters. The models were then used to estimate rechlorination time and chlorine decay time. The results indicated that water quality (e.g. organic matter and alkalinity) and pipeline materials were important factors influencing bulk decay and sand filtrate exhibited greater chlorine decay than dual media filtrate. The two-component second-order model was more applicable than the first decay model, and it enabled the estimation of chlorine decay time. These results are expected to provide the basis for modeling chlorine decay of different water purification processes and pipeline materials.

상수도 공급과정 중 재염소 투입에 따른 잔류염소농도 수체감소계수 예측모델 개발 (Development of prediction models of chlorine bulk decay coefficient by rechlorination in water distribution network)

  • 정보배;김기범;서지원;구자용
    • 상하수도학회지
    • /
    • 제33권1호
    • /
    • pp.17-29
    • /
    • 2019
  • This study developed prediction models of chlorine bulk decay coefficient by each condition of water quality, measuring chlorine bulk decay coefficients of the water and water quality by water purification processes. The second-reaction order of chlorine were selected as the optimal reaction order of research area because the decay of chlorine was best represented. Chlorine bulk decay coefficients of the water in conventional processes, advanced processes before rechlorination was respectively $5.9072(mg/L)^{-1}d^{-1}$ and $3.3974(mg/L)^{-1}d^{-1}$, and $1.2522(mg/L)^{-1}d^{-1}$ and $1.1998(mg/L)^{-1}d^{-1}$ after rechlorination. As a result, the reduction of organic material concentration during the retention time has greatly changed the chlorine bulk decay coefficient. All the coefficients of determination were higher than 0.8 in the developed models of the chlorine bulk decay coefficient, considering the drawn chlorine bulk decay coefficient and several parameters of water quality and statistically significant. Thus, it was judged that models that could express the actual values, properly were developed. In the meantime, the chlorine bulk decay coefficient was in proportion to the initial residual chlorine concentration and the concentration of rechlorination; however, it may greatly vary depending on rechlorination. Thus, it is judged that it is necessary to set a plan for the management of residual chlorine concentration after experimentally assessing this change, utilizing the methodology proposed in this study in the actual fields. The prediction models in this study would simulate the reduction of residual chlorine concentration according to the conditions of the operation of water purification plants and the introduction of rechlorination facilities, more reasonably considering water purification process and the time of chlorination. In addition, utilizing the prediction models, the reduction of residual chlorine concentration in the supply areas can be predicted, and it is judged that this can be utilized in setting plans for the management of residual chlorine concentration.

Simulation study on the nonlinear evolution of EMIC instability

  • 라기철;류창모
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.119.2-119.2
    • /
    • 2012
  • Charged particle energization is an outstanding problem in space physics. This paper investigates the nonlinear dynamics of Alfve'n-cyclotron waves accompanying particle heating processes and the drift Alfv'en-cyclotron (or EMIC) instability associated with a current disruption event on 29 January 2008 observed with THEMIS satellite by means of a particle-in-cell simulation. The simulation shows that the drift Alfv'en-cyclotron instabilities are excited in two regimes, a relatively low frequency mode propagating in a quasi-perpendicular direction while the second high-frequency branch propagating in a predominantly parallel propagation direction, which is consistent with observation as well as earlier theories. It is shown that parametric decay processes lead to an inverse cascade of Alfv'en-cyclotron waves and the generation of ion-acoustic waves by decay instability. It is also shown that the nonlinear decay processes are accompanied by small perpendicular heating and parallel cooling of the protons, and a pronounced parallel heating of the electrons.

  • PDF

Nonsense-mediated mRNA decay at the crossroads of many cellular pathways

  • Lejeune, Fabrice
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.175-185
    • /
    • 2017
  • Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism ensuring the fast decay of mRNAs harboring a premature termination codon (PTC). As a quality control mechanism, NMD distinguishes PTCs from normal termination codons in order to degrade PTC-carrying mRNAs only. For this, NMD is connected to various other cell processes which regulate or activate it under specific cell conditions or in response to mutations, mis-regulations, stresses, or particular cell programs. These cell processes and their connections with NMD are the focus of this review, which aims both to illustrate the complexity of the NMD mechanism and its regulation and to highlight the cellular consequences of NMD inhibition.

EPANET 2.0과 관망실험을 통한 배수관망 염소농도 감쇄 비교연구 (A comparative study for the decay of chlorine residual using EPANET2.0 and an experimental pipeline system)

  • 백다원;김현준;김상현
    • 상하수도학회지
    • /
    • 제32권5호
    • /
    • pp.411-419
    • /
    • 2018
  • The residual chlorine concentration is an essential factor to secure reliable water quality in the water distribution systems. The chlorine concentration decays along the pipeline system and the main processes of the reaction can be divided into the bulk decay and the wall decay mechanisms. Using EPANET 2.0, it is possible to predict the chlorine decay through bulk decay and wall decay based on the pipeline geometry and the hydraulic analysis of the water distribution system. In this study, we tried to verify the predictability of EPANET 2.0 using data collected from experimental practices. We performed chlorine concentration measurement according to various Reynolds numbers in a pilot-scale water distribution system. The chlorine concentration was predicted using both bulk decay model and wall decay model. As a result of the comparison between experimental data and simulated data, the performance of the limited $1^{st}$-order model was found to the best in the bulk decay model. The wall decay model simulated the initial decay well, but the overall chlorine decay cannot be properly predicted. Simulation also indicated that as the Reynolds number increased, the impact of the wall.