• Title/Summary/Keyword: Debris flow mobility

Search Result 7, Processing Time 0.019 seconds

A Study on the Deposition Characteristics of Debris Flow Using Small-scaled Laboratory Test (실내 모형실험을 통한 토석류 퇴적 특성 연구)

  • Chang, Hyungjoon;Ryou, Kukhyun;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.2
    • /
    • pp.25-33
    • /
    • 2021
  • This study was conducted to understand the deposition characteristics of debris flow and to analyze the reduction effect of debris flow damage by installing a berm. Flume experiments were performed in consideration of various channel slope and volumetric sediment concontration. In order to analyze the reduction effect of debris flow damage by installing a berm, the cases of not installing a berm and the cases of installing a berm were compared. In this study, the runout distance, total travel distance, and mobility ratio were analyzed among the deposition characteristics of debris flow. First, the deposition characteristics of debris flow according to the change of the channel slope were analyzed, and the deposition characteristics of debris flow due to the change of volumetric sediment concentration were analyzed. In addition, the change rate of debris flow deposition characteristics when a berm was installed was calculated based on the case when a berm was not installed. As a result of the experiments, it was confirmed that the channel slope and volumetric sediment concentration had a significant effect on the deposition characteristics of debris flow. In addition, when a berm is installed on the slope, the runout distance and mobility ratio of debris flow are greatly decreased, and the total travel distance is increased. This means that installing a berm delays the movement of debris flow and reduces the potential mobility of debris flow. The results of this study will provide useful information for understanding the deposition characteristics of debris flow. Furthermore, it is expected to help in the design of a berm.

Debris Flow Mobility: A Comparison of Weathered Soils and Clay-rich Soils (풍화토와 점성토 위주의 토석류 거동과 유동특성)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.23-27
    • /
    • 2013
  • The risks of debris flows caused by climate change have increased significantly around the world. Recently, landslide disaster prevention technology is more focused on the failure and post-failure dynamics to mitigate the hazards in flow-prone area. In particular, we should define the soil strength and flow characteristics to estimate the debris flow mobility in the mountainous regions in Korea. To do so, we selected known ancient landslides area: Inje, Pohang and Sangju debris flows. Firstly we measured physical and mechanical properties: liquidity index and undrained shear strength by fall cone penetrometer. From the test results, we found that there is a possible relationship between liquidity index and undrained shear strength, $C_{ur}=(1.2/I_L)^{3.3}$, in the selected areas, even though they were different in geological compositions. Assuming that the yield stress is equal to the undrained shear strength at the initiation of sliding, we examined the flow characteristics of weathered soils in Korea. When liquidity index is given as 1, 1.5 and 3.0, the debris flow motion of weathered soils is compared with that of mud-rich sediments, which are known as low-activity clays. At $I_L=1$, it seems that debris flow could reach approximately 250m after 5 minutes. As liquidity index increased from 1 to 3, the debris flow propagation of weathered soils is twice than that of low-activity clays. It may be due to the fact that soil masses mixed with the ambient water and then highly fragmented during flow, thereby leading to the high mobility. The results may help to predict the debris flow propagation and to develop disaster prevention technology at similar geological settings, especially for the weathered soils, in Korea.

Rheological Models for Describing Fine-laden Debris Flows: Grain-size Effect (세립토 위주의 토석류에 관한 유변학적 모델: 입자크기 효과)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.49-61
    • /
    • 2011
  • This paper presents the applicability of rheological models for describing fine-laden debris flows and analyzes the flow characteristics as a function of grain size. Two types of soil samples were used: (1) clayey soils - Mediterranean Sea clays and (2) silty soils - iron ore tailings from Newfoundland, Canada. Clayey soil samples show a typical shear thinning behavior but silty soil samples exhibit the transition from shear thinning to the Bingham fluid as shear rate is increased. It may be due to the fact that the determination of yield stress and plastic viscosity is strongly dependent upon interstructrual interaction and strength evolution between soil particles. So grain size effect produces different flow curves. For modeling debris flows that are mainly composed of fine-grained sediments (<0.075 mm), we need the yield stress and plastic viscosity to mimic the flow patterns like shape of deposition, thickness, length of debris flow, and so on. These values correlate with the liquidity index. Thus one can estimate the debris flow mobility if one can measure the physical properties.

Analysis of Liquefied Layer Activities Considering Erosion and Sedimentation of Debris Flow (토석류의 침식 및 퇴적을 고려한 유동층의 거동 분석)

  • Kim, Sungduk;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.4
    • /
    • pp.23-29
    • /
    • 2019
  • Heavy rainfall is in causing debris flow by recent climate change and causes much damage in the downstream. The debris flow from the mountainous area runs to the downstream, repeating sedimentation and erosion, and appears as a fluidized soil-water mixture. Continuity equation and momentum equation were applied to analyze the debris flow with strong mobility, and the sedimentation and erosion velocity with fine particle fractions were also applied. This study is to analyze the behavior of debris flow at the downstream end for the variation of the amount of sediments can occur in the upstream of the mountain. Analysis of sediment volume concentration at the downstream end of the channel due to the variance of the length of pavement of the granulated soils resulted in the higher the supply flow discharge and the longer the length of pavement, the greater the difference in the level of sediment concentration and the earlier the point of occurrence of the inflection point. The results of this study will provide good information for determining the erosion-sedimentation velocity rate which can detect erosion and sedimentation on steep slopes.

Ring-shear Apparatus for Estimating the Mobility of Debris Flow and Its Application (토석류 유동성 평가를 위한 링 전단시험장치 개발 및 활용)

  • Jeong, Sueng-Won;Fukuoka, Hiroshi;Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.181-194
    • /
    • 2013
  • Landslides are known as gravitational mass movements that can carry the flow materials ranging in size from clay to boulders. The various types of landslides are differentiated by rate and depositional features. Indeed, flow characteristics are observed from very slow-moving landslides (e.g., mud slide and mud flow) to very fast-moving landslides (e.g., debris avalanches and debris flows). From a geomechanical point of view, shear-rate-dependent shear strength should be examined in landslides. This paper presents the design of advanced ring-shear apparatus to measure the undrained shear strength of debris flow materials in Korea. As updated from conventional ring-shear apparatus, this apparatus can evaluate the shear strength under different conditions of saturation, drainage and consolidation. We also briefly discussed on the ring shear apparatus for enforcing sealing and rotation control. For the materials with sands and gravels, an undrained ring-shear test was carried out simulating the undrained loading process that takes place in the pre-existing slip surface. We have observed typical evolution of shear strength that found in the literature. This paper presents the research background and expected results from the ring-shear apparatus. At high shear speed, a temporary liquefaction and grain-crushing occurred in the sliding zone may take an important role in the long-runout landslide motion. Strength in rheology can be also determined in post-failure dynamics using ring-shear apparatus and be utilized in debris flow mobility.

A Study on the Flow Characteristics of Debris Flow Using Small-scaled Laboratory Test (실내 모형실험을 통한 토석류 흐름 특성 연구)

  • Ryou, Kukhyun;Chang, Hyungjoon;Lee, Hojin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.235-245
    • /
    • 2021
  • Recently, the frequency of torrential rain is increasing due to climate change, which causes a large amount of debris flows. The purpose of this study was to understand the flow characteristics of debris flow according to the change in channel slope and volumetric sediment concentration and to analyze the effects of a berm on the flow characteristics of debris flow. The flow characteristics of debris flow, such as flow velocity, flow depth, Froude number, and flow resistance coefficients, were calculated using laboratory tests. The effect of a berm was analyzed by comparing the experimental results of a linear channel with those of a one-stepped channel. The results showed that the channel slope affected the flow velocity and flow depth, and the volumetric sediment concentration affected the flow velocity and flow depth, Froude number, and flow resistance coefficient. Moreover, as a berm was installed, the flow velocity and flow depth decreased by up to 26.1% and 71.2%, respectively. This means that installing a berm reduces the flow velocity, thereby reducing the mobility and kinetic energy. These results provide useful information to understand better the flow characteristics of debris flow and the effectiveness of a berm.

Rheological Characteristics and Debris Flow Simulation of Waste Materials (광산폐석의 유변학적 특성과 토석류 흐름특성 분석)

  • Jeong, Sueng Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1227-1240
    • /
    • 2014
  • Abandoned mines often cause environmental problems, such as alteration of landscape, metal contamination, and landslides due to a heavy rainfall. Geotechnical and rheological tests were performed on waste materials corrected from Imgi waste rock dump, located in Busan Metropolitan City. Debris flow mobility was examined with the help of 1-D BING model which was often simulated in both subaerial and subaqueous environments. To determine flow curve, we used a vane-penetrated rheometer. The shear stress (${\tau}$)-shear rate (${\dot{\gamma}}$) and viscosity(${\eta}$)-shear rate (${\dot{\gamma}}$) relationships were plotted using a shear stress control mode. Well-known rheological models, such as Bingham, bilinear, Herschel-Bulkley, Power-law, and Papanastasiou concepts, were compared to the rheological data. From the test results, we found that the tested waste materials exhibited a typical shear shinning behavior in ${\tau}$-${\dot{\gamma}}$ and and ${\eta}$-${\dot{\gamma}}$ plots, but the Bingham behavior is often observed when the water contents increased. The test results show that experimental data are in good agreement with rheological models in the post-failure stage during shearing. Based on the rheological properties (i.e., Bingham yield stress and viscosity as a function of the volumetric concentration of sediment) of waste materials, initial flowing shape (5 m, 10 m, and 15 m) and yield stress (100 Pa, 200 Pa, 300 Pa, and 500 Pa) were input to simulate the debris flow motion. As a result, the runout distance and front velocity of debris flow are in inverse propositional to yield stress. In particular, when the yield stress is less than 500 Pa, most of failed masses can flow into the stream, resulting in a water contamination.