• Title/Summary/Keyword: Deballasting

Search Result 5, Processing Time 0.021 seconds

Optimized Trim and Heeling Adjustment by Using Heuristic Algorithm (휴리스틱 알고리즘을 이용한 트림 및 힐링 각도 조절 최적화)

  • HONG CHUNG You;LEE JIN UK;PARK JE WOONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.62-67
    • /
    • 2004
  • Many ships in voyage experience weight and buoyancy distribution change by various reasons such as change of sea water density and waves, weather condition, and consumption of fuel, provisions, etc . The weight and buoyancy distribution change can bring the ships out of allowable trim, heeling angle. In these case, the ships should adjust trim and heeling angle by shifting of liquid cargo or ballasting, deballasting of ballast tanks for recovery of initial state or for a stable voyage. But, if the adjustment is performed incorrectly, ship's safety such as longitudinal strength, intact stability, propeller immersion, wide visibility, minimum forward draft cannot be secured correctly. So it is required that the adjustment of trim and heeling angle should be planned not by human operators but by optimization computer algorithm. To make an optimized plan to adjust trim and heeling angle guaranteeing the ship's safety and quickness of process, Uk! combined mechanical analysis and optimization algorithm. The candidate algorithms for the study were heuristic algorithm, meta-heuristic algorithm and uninformed searching algorithm. These are widely used in various kinds of optimization problems. Among them, heuristic algorithm $A^\ast$ was chosen for its optimality. The $A^\ast$ algorithm is then applied for the study. Three core elements of $A^\ast$ Algorithm consists of node, operator, evaluation function were modified and redefined. And we analyzed the $A^\ast$ algorithm by considering cooperation with loading instrument installed in most ships. Finally, the algorithm has been applied to tanker ship's various conditions such as Normal Ballast Condition, Homo Design Condition, Alternate Loading Condition, Also the test results are compared and discussed to confirm the efficiency and the usefulness of the methodology developed the system.

  • PDF

A Study on the Sterilization of Sea Water using Redox Reaction (Redox 반응을 이용한 해수 살균에 대한 연구)

  • Song, Ju-Yeong;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • The sterilization of strain and algae in sea water was studied to see the possibility to apply the redox reaction of metal alloy to meet the international marine organization(IMO) regulation, which was to regulate deballasting concentration of strain and algae above 99% of sterilization. Two different kinds of brass were heat treated at different temperature and cooled rapidly to conserve the specific character of ${\beta}$ brass. Untreated Muntz metal showed the best result of antimicrobial rate in sea water, and 7:3 brass showed similar result to Muntz metal. Heavy metal elution rate was inversely proportional to the sterilization capability.

Optimal Design of Mud Flushing System in Ballast tank of LNG Carrier (LNG선 Ballast Tank Mud Flushing System의 최적설계)

  • Park, Sang Hyeop;Song, Yoo Seok;Kim, Young Bok
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.2
    • /
    • pp.85-92
    • /
    • 2016
  • During ballast of a LNG carrier, the mud at the sea floor can enter the tanks together with the ballast water if the LNG terminal is located at shallow water region. In order to remove the mud deposited on the tank floor during deballasting, the mud flushing system in the ballast tanks is applied. In this study, various analyses to conform the efficiency in the mud removal are performed. In order to design the mud flushing system, the particle size of the mud is measured by particle size analyzer. Flushing performance is evaluated by numerical analysis. From the results of numerical analysis including flow field and piping system network, the optimized flushing system is determined.

An Algorithm for Automatic Determination and Calculation of Volumetric Spaces of Submerged Bodies (잠수체의 구획 분류 및 체적 계산을 위한 구획 결정 알고리즘)

  • Park, Inha;Nam, Jong-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.148-153
    • /
    • 2014
  • Submerged bodies such as autonomous underwater vehicles (AUV) or remotely operated vehicles (ROV) are widely used in various fields of exploring underseas. Those bodies keep ballasting and deballasting for stable navigation and operation. Identifying the internal volumetric spaces of the bodies is a primary step for such an operation. Unfortunately, most CAD models given to the engineer do not properly represent the compartments since each face of a compartment exists as an independent entity rather than as a face that belongs to the compartment. In this paper, an algorithm that automatically identify the faces as a group that forms a closed volumetric space, i.e., a compartment is presented. A submerged body is sliced into a number of cross sections. Each sliced section is analyzed to yield closed loops that are sections of the compartment. Then, the associated closed loops are gathered along the longitudinal direction to form a compartment. The algorithm presented is shown to provide a practical and reasonable solution that can readily be used in various applications.

Methods for sampling and analysis of marine microalgae in ship ballast tanks: a case study from Tampa Bay, Florida, USA

  • Garrett, Matthew J.;Wolny, Jennifer L.;Williams, B. James;Dirks, Michael D.;Brame, Julie A.;Richardson, R. William
    • ALGAE
    • /
    • v.26 no.2
    • /
    • pp.181-192
    • /
    • 2011
  • Ballasting and deballasting of shipping vessels in foreign ports have been reported worldwide as a vector of introduction of non-native aquatic plants and animals. Recently, attention has turned to ballast water as a factor in the global increase of harmful algal blooms (HABs). Many species of microalgae, including harmful dinoflagellate species, can remain viable for months in dormant benthic stages (cysts) in ballast sediments. Over a period of four years, we surveyed ballast water and sediment of ships docked in two ports of Tampa Bay, Florida, USA. Sampling conditions encountered while sampling ballast water and sediments were vastly different between vessels. Since no single sample collection protocol could be applied, existing methods for sampling ballast were modified and new methods created to reduce time and labor necessary for the collection of high-quality, qualitative samples. Five methods were refined or developed, including one that allowed for a directed intake of water and sediments. From 63 samples, 1,633 dinoflagellate cysts and cyst-like cells were recovered. A native, cyst-forming, harmful dinoflagellate, Alexandrium balechii (Steidinger) F. J. R. Taylor, was collected, isolated, and cultured from the same vessel six months apart, indicating that ships exchanging ballast water in Tampa Bay have the potential to transport HAB species to other ports with similar ecologies, exposing them to non-native, potentially toxic blooms.