• Title/Summary/Keyword: Death receptor 4 (DR4)

Search Result 37, Processing Time 0.019 seconds

Induction of Apoptosis by Ethanol Extract of Cnidium officinale in Human Leukemia U937 Cells through Activation of AMPK (천궁 에탄올 추출물의 AMPK 활성화를 통한 U937 인체 혈구암세포의 apoptosis 유발)

  • Jeong, Jin-Woo;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1255-1264
    • /
    • 2015
  • Cnidium officinale, a traditional herb, has diverse beneficial pharmacological activities, such as anti-inflammatory, antioxidant, anticancer, and antiangiogenesis effects. However, the cellular and molecular mechanisms of apoptosis by C. officinale are poorly defined. The present study investigated the proapoptotic effects of water, ethanol, and methanol extract of C. officinale (WECO, EECO, and MECO, respectively) in human leukemia U937 cells. The antiproliferative activity of EECO was higher than that of WECO and MECO. The antiproliferative effect of EECO treatment in U937 cells was associated with the induction of apoptotic cell death, including increased populations of annexin-V positive cells, the formation of apoptotic bodies, DNA fragmentation, and increased numbers of cells with a loss of mitochondrial membrane potential (MMP, Δψm). EECO-induced apoptotic cell death was associated with upregulation of death receptor 4 (DR4) and down-regulation of cellular inhibitor of apoptosis protein-1 (cIAP-1), Bcl-2, and total Bid. The EECO treatment also induced the proteolytic activation of caspases (-3, -8, and -9), and degradation of caspase-3 substrate proteins, such as poly(ADP-ribose) polymerase (PARP), β-catenin, and phospholipase C-γ1 (PLCγ1). In addition, the EECO treatment effectively activated the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. However, compound C, a specific inhibitor of AMPK, significantly reduced EECO-induced apoptosis. These results indicate that AMPK is a key regulator of apoptosis in response to EECO in human leukemia U937 cells.

Induction of Apoptosis by Ethanol Extracts of Fermented Agabeans in AGS Human Gastric Carcinoma Cells (AGS 인체위암세포에서 발효된 아가콩 추출물에 의한 apoptosis 유도)

  • Kim, Sung-Ryeal;Lee, Hye-Hyeon;Kim, Min-Jeong;Seo, Min-Jeong;Hong, Su-Hyun;Choi, Yung-Hyun;Kang, Byoung-Won;Park, Jeong-Uck;Joo, Woo-Hong;Rhu, Eun-Ju;Jeong, Yong-Kee
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1872-1881
    • /
    • 2010
  • Extracts of soybeans fermented by Bacillus subtilis have a wide variety of functions, such as enhancing the body's immune function, fibrinolysis activity, anti-inflammation, anti-cancer, estrogen function and anti-infection effects. Recently, it was reported that the extracts of fermented beans exhibit strong anti-inflammatory and anti-cancer properties by suppressing the transcription of pro-inflammatory cytokine genes and induction of apoptosis, respectively. However, the mechanisms of their cytotoxicity in human gastric cancer cells are poorly understood. In the present study, we investigated the effects of ethyl alcohol extracts from fermented soybean (FS) and yellow agabean (FYA) on cell growth and apoptosis in AGS human gastric cancer cells. A treatment of FS and FYA inhibited the growth of AGS cells in a concentration-dependent manner by inducing apoptosis. FS- and FYA-induced apoptosis were associated with down-regulation of XIAP and cIAP-2, and up-regulation of pro-apoptotic Bax expression. Moreover, a treatment of FS and FYA not only triggered an increase in the levels of death receptor (DR)4, DR5, Fas and FasL, but also induced the activation of casepase-3, -8 and -9. These findings illustrate that FS and FYA may have a therapeutic potential in human gastric AGS cells and as a functional food.

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Mak ino in Human Leuk emia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Eun Jung Ahn;Chul Hwan Kim;Jin-Woo Jeong;Buyng Su Hwang;Min-Jeong Seo;Kyung-Min Choi;Su Young Shin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.77-77
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer mechanisms are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins (XIAP, cIAP-1, survivin), depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.

  • PDF

Chestnut extract induces apoptosis in AGS human gastric cancer cells

  • Lee, Hyun-Sook;Kim, Eun-Ji;Kim, Sun-Hyo
    • Nutrition Research and Practice
    • /
    • v.5 no.3
    • /
    • pp.185-191
    • /
    • 2011
  • In Korea, chestnut production is increasing each year, but consumption is far below production. We investigated the effect of chestnut extracts on antioxidant activity and anticancer effects. Ethanol extracts of raw chestnut (RCE) or chestnut powder (CPE) had dose-dependent superoxide scavenging activity. Viable numbers of MDA-MD-231 human breast cancer cells, DU145 human prostate cancer cells, and AGS human gastric cancer cells decreased by 18, 31, and 69%, respectively, following treatment with $200{\mu}g/mL$ CPE for 24 hr. CPE at various concentrations ($0-200{\mu}g/mL$) markedly decreased AGS cell viability and increased apoptotic cell death dose and time dependently. CPE increased the levels of cleaved caspase-8, -7, -3, and poly (ADP-ribose) polymerase in a dose-dependent manner but not cleaved caspase-9. CPR exerted no effects on Bcl-2 and Bax levels. The level of X-linked inhibitor of apoptosis protein decreased within a narrow range following CPE treatment. The levels of Trail, DR4, and Fas-L increased dose-dependently in CPE-treated AGS cells. These results show that CPE decreases growth and induces apoptosis in AGS gastric cancer cells and that activation of the death receptor pathway contributes to CPE-induced apoptosis in AGS cells. In conclusion, CPE had more of an effect on gastric cancer cells than breast or prostate cancer cells, suggesting that chestnuts would have a positive effect against gastric cancer.

Characterization of EST Gene in the Bovine Corpus Luteum during the Estrous Cycle

  • Lee, Eunyoung;Kim, Sang Hwan;Kim, Byung-Gak;Yoon, Jong Taek
    • Development and Reproduction
    • /
    • v.19 no.4
    • /
    • pp.227-234
    • /
    • 2015
  • The objective of this study was to investigate the expression of bovine luteum expressed sequence tags (ESTs), vascular endothelial growth factor (VEGF), and tumor necrosis factor receptor 1 (TNFR1) and the presence of functional ESTs in the bovine corpus luteum (CL) during different stages of the estrus cycle. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed a difference in the expression of ESTs during the CL stage. Concentration of ESTs in the CL tissue increased significantly from the mid-luteal stage and decreased thereafter. RT-PCR analysis showed higher levels of the EST genes in the CL of the mid-luteal stage than in other stages, and the same level of expression of VEGF. Immunohistochemistry analysis of the tissue from CL formation to regression showed low cytosol and aggregation of the nucleus. And activity caspase 3 (apoptosis detector) was most strongly detected in the CL1 stage of bovine. During the estrous cycle, the cytosol was magnified and differentiation of the nucleus was clearly manifested. The ESTs affected the CL, and the relationship between VEGF and TNFR1 played a pivotal role for CL development and activation, dependent on the stage of CL. These results suggest local production of ESTs, the presence of functional ESTs in the bovine CL, and that ESTs play a role in regulating the function of cell death in bovine CL.

Esculetin Induces Apoptosis through Caspase-3 Activation in Human Leukemia U937 Cells (Esculetin의 caspase-3 활성을 통한 U937 인체 혈구암세포의 세포사멸 유도)

  • Park, Cheol;Hyun, Sook-Kyung;Shin, Woo-Jin;Chung, Kyung-Tae;Choi, Byung-Tae;Kwon, Hyun-Ju;Hwang, Hye-Jin;Kim, Byung-Woo;Park, Dong-Il;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.249-255
    • /
    • 2009
  • Esculetin, a coumarin compound, has been known to inhibit proliferation and induce apoptosis in several types of human cancer cells. However, the molecular mechanisms involved in esculetin-induced apoptosis are still uncharacterized in human leukemia cells. In this study, we have investigated whether esculetin exerts anti-proliferative and apoptotic effects on human leukemia U937 cells. It was found that esculetin could inhibit cell viability in a time-dependent manner, which was associated with the induction of apoptotic cell death such as increased populations of apoptotic- sub G1 phase. Apoptosis of U937 cells by esculetin was associated with an inhibition of Bcl-2/Bax binding activity, formation of tBid, down-regulation of X-linked inhibitor of apoptotic protein (XIAP) expression, and up-regulation of death receptor 4 (DR4) and FasL expression. Esculetin treatment also induced the degradation of ${\beta}$-catenin and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Furthermore, a caspase-3 specific inhibitor, z-DEVD-fmk, significantly inhibited sub-G1 phase DNA content, morphological changes and degradation of ${\beta}$-catenin and DEE45/ICAD. These results indicated that a key regulator in esculetin-induced apoptosis was caspase-3 in human leukemia U937 cells.

Induction of Apoptosis by Ethanol Extract of Scutellaria baicalensis in Renal ell Carcinoma Caki-1 Cells (황금(黃芩) 에탄올 추출물에 의한 인체 신세포암 Caki-1 세포의 자가세포사멸 유도)

  • Hwang, Won Deok;Im, Yong-Gyun;Son, Byoung Yil;Park, Cheol;Park, Dong Il;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.518-528
    • /
    • 2013
  • Scutellaria baicalensis, belonging to the family Labiatae, is widely distributed in Korea, China, Mongolia, and eastern Siberia. It has been used in traditional medicine for various diseases, such as dysentery, pyrexia, jaundice, and carbuncles. In addition, S. baicalensis is reported to possess various beneficial pharmacological activities, including anti-inflammatory, antidiabetic, antiviral, antihypertension, antioxidant, and anticancer effects. However, the molecular mechanisms of its anticancer activity have not been clearly elucidated. In the present study, we investigated the proapoptotic effects of ethanol extract of S. baicalensis (EESB) on human renal cell carcinoma Caki-1 cells. The anti-proliferative activity of EESB was associated with apoptosis induction, which was associated with the up-regulation of death receptor 4, the Fas ligand, and Bax and the down-regulation of Bid, XIAP, and cIAP-1 proteins. EESB treatment also induced mitochondrial dysfunction, proteolytic activation of caspase-3, -8, and -9 and degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase, ${\beta}$-catenin, and phospholipase C-${\gamma}1$. However, pretreatment of a pan-caspase inhibitor, z-VAD-fmk, significantly attenuated the EESB-induced apoptosis. Taken together, these findings suggest that EESB may be a potential chemotherapeutic agent. Further studies will be needed to identify the active compounds that confer the anticancer activity of S. baicalensis.