• Title/Summary/Keyword: Death receptor

Search Result 408, Processing Time 0.029 seconds

A small carbohydrate fraction from Artemisia Folium suppresses death of the mouse thymocytes in vitro by down-regulating the Fas death receptor gene

  • Youn, Hyun-Joo;Chung, Hye-Kyung;Ji, Hee-Jung
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.131.2-132
    • /
    • 2003
  • Artemisia Folium is a preparation of dried leaves from Artemisia species and has been used traditionally to prevent or treat various kinds of woman's diseases. A similar preparation called Chinese Moxa has been used to treat rheumatism by moxibustion in Chinese medicine. A small carbohydrate fraction of approximately 1,000 dlaton from the water-soluble extract of the Artemisia Folium promoted survival of the mouse thymocytes in culture. A mouse gene array study suggested that the fraction might modulate Fas/FasL dependent apoptotic cell death and thus had influence on the survival of the thymocytes in culture. (omitted)

  • PDF

The Nuclear Orphan Receptor NR4A1 is Involved in the Apoptotic Pathway Induced by LPS and Simvastatin in RAW 264.7 Macrophages

  • Kim, Yong Chan;Song, Seok Bean;Lee, Sang Kyu;Park, Sang Min;Kim, Young Sang
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.116-122
    • /
    • 2014
  • Macrophage death plays a role in several physiological and inflammatory pathologies such as sepsis and arthritis. In our previous work, we showed that simvastatin triggers cell death in LPS-activated RAW 264.7 mouse macrophage cells through both caspase-dependent and independent apoptotic pathways. Here, we show that the nuclear orphan receptor NR4A1 is involved in a caspase-independent apoptotic process induced by LPS and simvastatin. Simvastatin-induced NR4A1 expression in RAW 264.7 macrophages and ectopic expression of a dominant-negative mutant form of NR4A1 effectively suppressed both DNA fragmentation and the disruption of mitochondrial membrane potential (MMP) during LPS- and simvastatin-induced apoptosis. Furthermore, apoptosis was accompanied by Bcl-2-associated X protein (Bax) translocation to the mitochondria. Our findings suggest that NR4A1 expression and mitochondrial translocation of Bax are related to simvastatin-induced apoptosis in LPS-activated RAW 264.7 macrophages.

Emerging Targets for Systemic Treatment of Gastric Cancer: HER2 and Beyond

  • In-Ho Kim
    • Journal of Gastric Cancer
    • /
    • v.24 no.1
    • /
    • pp.29-56
    • /
    • 2024
  • In recent years, remarkable progress has been made in the molecular profiling of gastric cancer. This progress has led to the development of various molecular classifications to uncover subtype-specific dependencies that can be targeted for therapeutic interventions. Human epidermal growth factor receptor 2 (HER2) is a crucial biomarker for advanced gastric cancer. The recent promising results of novel approaches, including combination therapies or newer potent agents such as antibody-drug conjugates, have once again brought attention to anti-HER2 targeted treatments. In HER2-negative diseases, the combination of cytotoxic chemotherapy and programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors has become the established standard of care in first-line settings. In the context of gastric cancer, potential biomarkers such as PD-L1 expression, Epstein-Barr virus, microsatellite instability, and tumor mutational burden are being considered for immunotherapy. Recently, promising results have been reported in studies on anti-Claudin18.2 and fibroblast growth factor receptor 2 treatments. Currently, many ongoing trials are aimed at identifying potential targets using novel approaches. Further investigations will be conducted to enhance the progress of these therapies, addressing challenges such as primary and acquired resistance, tumor heterogeneity, and clonal evolution. We believe that these efforts will improve patient prognoses. Herein, we discuss the current evidence of potential targets for systemic treatment, clinical considerations, and future perspectives.

Luteolin sensitizes human liver cancer cells to TRAIL-induced apoptosis via autophagy and JNK-mediated death receptor 5 upregulation

  • UDDIN MD. NAZIM;SANG‑YOUEL PARK
    • International Journal of Oncology
    • /
    • v.54 no.2
    • /
    • pp.665-672
    • /
    • 2019
  • The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a dynamic cytokine that initiates the apoptosis of cancer cells, but exhibits little or no toxicity in normal cells. Luteolin is a flavonoid compound frequently used in the treatment of cancer. In the current study, we demonstrate that treatment with luteolin and TRAIL exerts a synergistic effect and the mechanisms on TRAIL-resistant Huh7 cells. The results demonstrated that luteolin induced an autophagic flux in human liver cancer cells. The attenuation of the autophagic flux by applying the specific inhibitor of autophagy, chloroquine, significantly suppressed DR5 expression. Treatment with genetically modified autophagy-related 5 siRNA abrogated the luteolin-mediated sensitizing effect of TRAIL. Furthermore, pre-treatment with the c-Jun N-terminal kinase (JNK) inhibitor, SP600125, significantly attenuated the luteolin-induced upregulation of DR5 expression, thereby suggesting that JNK activation promotes DR5 expression. Our findings also revealed that Akt phosphorylation was required for TRAIL sensitization. On the whole, the findings of this study indicated that luteolin effectively enhanced TRAIL-initiated apoptosis, and that these effects were likely to be mediated by autophagy and JNK-mediated DR5 expression.

Inhibition of Nitric Oxide-induced Neuronal Apoptosis in PC12 Cells by Epigallocatechin Gallate

  • Jung, Ji-Yeon;Jeong, Yeon-Jin;Han, Chang-Ryoung;Kim, Sun Hun;Kim, Hyun-Jin;Lee, Ki-Heon;Park, Ha-Ok;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.239-246
    • /
    • 2005
  • In the central nervous system, nitric oxide (NO) is associated with many pathological diseases such as brain ischemia, neurodegeneration and inflammation. The epigallocatechin gallate (EGCG), a major compound of green tea, is recognized as protective substance against neuronal diseases. This study is aimed to investigate the effect of EGCG on NO-induced cell death in PC12 cells. Administration of sodium nitroprusside (SNP), a NO donor, decreased cell viability in a dose- and time-dependent manner and induced genomic DNA fragmentation with cell shrinkage and chromatin condensation. EGCG diminished the decrement of cell viability and the formation of apoptotic morphologenic changes as well as DNA fragmentation by SNP. EGCG played as an antioxidant that attenuated the production of reactive oxygen species (ROS) by SNP. The cells treated with SNP showed downregulation of Bcl-2, but upregulation of Bax. EGCG ameliorated the altered expression of Bcl-2 and Bax by SNP. The release of cytochrome c from mitochondria into cytosol and expression of voltage -dependent anion channel (VDAC)1, a cytochrome c releasing channel in mitochondria, were increased in SNP-treated cells, whereas were attenuated by EGCG. The enhancement of caspase-9, preceding mitochondria-dependent pathway, caspase-8 and death receptor-dependent pathway, as well as caspase-3 activities were suppressed by EGCG. SNP upragulated Fas and Fas-L, which are death receptor assembly, whereas EGCG ameliorated the expression of Fas enhanced by SNP. These results demonstrated that EGCG has a protective effect against SNP-induced apoptosis in PC12 cells, through scavenging ROS and regulating the mitocondria- and death receptor-mediated signal pathway. The present study suggest that EGCG might be a natural neuroprotective substance.

Benzo[a]pyrene Cytotoxicity Tolerance in Testicular Sertoli Cells Involves Aryl-hydrocarbon Receptor and Cytochrome P450 1A1 Expression Deficiencies

  • Kim, Jin-Tac;Park, Ji-Eun;Lee, Seung-Jin;Yu, Wook-Joon;Lee, Hye-Jeong;Kim, Jong-Min
    • Development and Reproduction
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2021
  • Benzo[a]pyrene (B[a]P) is a potent carcinogen and is classified as an endocrine-disrupting chemical. In mammalian testes, Sertoli cells support spermatogenesis. Therefore, if these cells are negatively affected by exposure to xenotoxic chemicals, spermatogenesis can be seriously disrupted. In this context, we evaluated whether mouse testicular TM4 Sertoli cells are susceptible to the induction of cytotoxicity-mediated cell death after exposure to B[a] P in vitro. In the present study, while B[a]P and B[a]P-7,8-diol were not able to induce cell death, exposure to BPDE resulted in cell death. BPDE-induced cell death is accompanied by the activation of caspase-3 and caspase-7. Depolarization of the mitochondrial membrane and cytochrome c release from mitochondria were observed in benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE)-treated cells. These results indicate that TM4 cells are susceptible to apoptosis in a caspase-dependent manner. Western blot and reverse transcription-polymerase chain reaction (RT-PCR) analyses showed that aryl hydrocarbon receptor (AhR) expression was almost undetectable in TM4 cells and that its expression was not altered after B[a]P treatment. This indicates that TM4 cells are nearly AhR-deficient. In TM4 cells, the CYP1A1 protein and its activity were not present. From these results, it is clear that AhR may be a prerequisite for CYP1A1 expression in TM4 cells. Therefore, TM4 cells can be referred to as CYP1A1-deficient cells. Thus, TM4 Sertoli cells are believed to have a rigid and protective cellular machinery against genotoxic agents. In conclusion, it is suggested that tolerance to B[a]P cytotoxicity is associated with insufficient AhR and CYP1A1 expression in testicular Sertoli cells.

Synergic induction of human periodontal ligament fibroblast cell death by nitric oxide and N-methyl-D-aspartic acid receptor antagonist

  • Seo, Tae-Gun;Cha, Se-Ho;Woo, Kyung-Mi;Park, Yun-Soo;Cho, Yun-Mi;Lee, Jeong-Soon;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Purpose: Nitric oxide (NO) has been known as an important regulator of osteoblasts and periodontal ligament cell activity. This study was performed to investigate the relationship between NO-mediated cell death of human periodontal ligament fibroblasts (PDLFs) and N-methyl-D-aspartic acid (NMDA) receptor antagonist (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine hydrogen maleate (MK801). Methods: Human PDLFs were treated with various concentrations (0 to 4 mM) of sodium nitroprusside (SNP) with or without $200\;{\mu}M$ MK801 in culture media for 16 hours and the cell medium was then removed and replaced by fresh medium containing MTS reagent for cell proliferation assay. Western blot analysis was performed to investigate the effects of SNP on the expression of Bax, cytochrome c, and caspase-3 proteins. The differences for each value among the sample groups were compared using analysis of variance with 95% confidence intervals. Results: In the case of SNP treatment, as a NO donor, cell viability was significantly decreased in a concentration-dependent manner. In addition, a synergistic effect was shown when both SNP and NMDA receptor antagonist was added to the medium. SNP treated PDLFs exhibited a round shape in culture conditions and were dramatically reduced in cell number. SNP treatment also increased levels of apoptotic marker protein, such as Bax and cytochrome c, and reduced caspase-3 in PDLFs. Mitogen-activated protein kinase signaling was activated by treatment of SNP and NMDA receptor antagonist. Conclusions: These results suggest that excessive production of NO may induce apoptosis and that NMDA receptor may modulate NO-induced apoptosis in PDLFs.

Characteristics of Purinergic Receptor Expressed in Human Retinoblastoma Cells

  • Kim, Dae-Ran;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.333-339
    • /
    • 2007
  • Recently, much attention has been paid to human retinoblastoma since it provide a good model system for studying mechanisms underlying cell growth, differentiation, proliferation, and apoptosis, and for developing cancer therapy. However, until now it is unclear whether purinergic receptors are involved in the calcium mobilization in the retinoblastoma cells. In this regard, we measured possible purinergic signaling in WERI-Rb-1 cells using $Ca^{2+}$ imaging technique and RT-PCR method. ATP-induced $[Ca^{2+}]_i$ transients was maintained to about $90.7{\pm}1.0%$ of the control (n=48) even in the absence of extracellular calcium. The ATP-induced intracellular calcium response was only attained to $10.4{\pm}1.8%$ (n=55) of peak amplitude of the control after preincubation of 1 ${\mu}MU-73122$, a PLC inhibitor, but it was not affected by 1 ${\mu}MU-73343$, a inactive form of U-73122. And also ATP-induced $[Ca^{2+}]_i$ rise was almost attenuated by 20 ${\mu}M$ 2-APB, a putative $IP_3$ receptor inhibitor. Two subtypes of $IP_3$ receptor $(IP_{3-1}R,\;IP_{3-2}R)$ were identified by a RT-PCR method. These findings suggest that purinergic stimuli can cause calcium mobilization via $PLC-IP_3$ pathway after the activation of P2Y receptors in the retinoblastoma cells, which may play important roles in cell proliferation, differentiation, growth, and cell death.

  • PDF

Pharmacological Approaches to Limit Ischemic and Reperfusion Injuries of the Heart: Analysis of Experimental and Clinical Data on P2Y12 Receptor Antagonists

  • Leonid N. Maslov;Sergey V. Popov;Alexandr V. Mukhomedzyanov;Ivan A. Derkachev;Vyacheslav V. Ryabov;Alla A. Boshchenko;N. Rajendra Prasad;Galina Z. Sufianova;Maria S. Khlestkina;Ilgiz Gareev
    • Korean Circulation Journal
    • /
    • v.52 no.10
    • /
    • pp.737-754
    • /
    • 2022
  • Ischemic and reperfusion injuries of the heart underlie the pathogenesis of acute myocardial infarction (AMI) and sudden cardiac death. The mortality rate is still high and is 5-7% in patients with ST-segment elevation myocardial infarction. The review is devoted to pharmacological approaches to limitation of ischemic and reperfusion injuries of the heart. The article analyzes experimental evidence and the clinical data on the effects of P2Y12 receptor antagonists on the heart's tolerance to ischemia/reperfusion in animals with coronary artery occlusion and reperfusion and also in patients with AMI. Chronic administration of ticagrelor prevented adverse remodeling of the heart. There is evidence that sphingosine-1-phosphate is the molecule that mediates the infarct-reducing effect of P2Y12 receptor antagonists. It was discussed a role of adenosine in the cardioprotective effect of ticagrelor.

[ $A_1$ ] Receptor-mediated Protection against Amyloid Beta-induced Injury in Human Neuroglioma Cells

  • Cho, Yong-Woon;Jung, Hyun-Ju;Kim, Yong-Keun;Woo, Jae-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.2
    • /
    • pp.37-43
    • /
    • 2007
  • Adenosine has been reported to provide cytoprotection in the central nervous systems as well as myocardium by activating cell surface adenosine receptors. However, the exact target and mechanism of its action still remain controversial. The present study was performed to examine whether adenosine has a protective effect against $A{\beta}$-induced injury in neuroglial cells. The astrocyte-derived human neuroglioma cell line, A172 cells, and $A{\beta}_{25{\sim}35}$ were employed to produce an experimental $A{\beta}$-induced glial cell injury model. Adenosine significantly prevented $A{\beta}$-induced apoptotic cell death. Studies using various nucleotide receptor agonists and antagonists suggested that the protection was mediated by $A_1$ receptors. Adenosine attenuated $A{\beta}$-induced impairment in mitochondrial functional integrity as estimated by cellular ATP level and MTT reduction ability. In addition, adenosine prevented $A{\beta}$-induced mitochondrial permeability transition, release of cytochrome c into cytosol and subsequent activation of caspase-9. The protective effect of adenosine disappeared when cells were pretreated with 5-hydroxydecanoate, a selective blocker of the mitochondrial ATP-sensitive $K^+$ channel. In conclusion, therefore we suggest that adenosine exerts protective effect against $A{\beta}$-induced cell death of A172 cells, and that the underlying mechanism of the protection may be attributed to preservation of mitochonarial functional integrity through opening of the mitochondrial ATP-sensitive $K^+$ channels.