The increased use of unmanned underwater vehicles (UUV) has led to the development of alternative navigational methods that do not employ acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small UUV. A SLAM scheme is an alternative navigation method for measuring the environment through which the vehicle is passing and providing the relative position of the UUV. A technique for a SLAM algorithm that uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the UUV and surrounding objects. In order to work efficiently, the nearest neighbor standard filter is introduced as the data association algorithm in the SLAM for associating the stored targets returned by the sonar at each time step. The proposed SLAM algorithm was tested by experiments under various three degrees of freedom motion conditions. The results of these experiments showed that the proposed SLAM algorithm was capable of estimating the position of the UUV and the surrounding objects and demonstrated that the algorithm will perform well in various environments.
이동로봇의 주행에는 주로 바퀴 엔코더, 비전, 초음파, 레이저 센서가 많이 사용된다. 바퀴의 엔코더는 추측항법으로 시간에 따라 오차가 누적되기 때문에 단독 사용으로는 정확한 로봇의 위치를 계산할 수가 없다. 비전 센서는 풍부한 정보를 제공하지만 정보추출에 시간이 많이 소요되고, 초음파 센서는 거리정보의 정확도가 떨어지기 때문에 항행에 사용하기에는 어려움이 있다. 반면 레이저 센서는 비교적 정확한 거리정보를 제공하여 주므로 주행 센서로 사용하기 적합하다. 본 논문에서는 레이저 거리계에서 각도를 추출하는 방법을 제안하고 칼만 필터를 사용하여 레이저 거리계에서 추출한 거리 및 각도와 바퀴 엔코더에서 추출한 거리 및 각도에 대한 정합을 수행한다. 일반적으로 레이저 거리계 사용시 특징점 하나를 사용한 경우에 그 특징점이 변하거나 새로운 특징점으로 이동할 때 오차가 커질 수가 있다. 이를 보완하기 위해 이동 로봇의 주행 시 레이저 스캐너에서 두 개의 특징점들을 사용하는 방법을 사용하여 이동 로봇의 항법 성능이 향상됨을 보인다.
선박 항적 데이터는 해상교통관제센터에 의해 실시간으로 모니터링 되고 수집되어 진다. 이러한 데이터를 기반으로 선박의 항적 패턴분석과 항적 모델을 추출하여 해상교통관제사의 의사결정에 기여하고자 한다. 항적 데이터의 처리와 가공, 항적 모델링을 위하여 SVM알고리즘이 사용되었으며, 적정 파라미터 선정을 위하여 k-fold cross validation이 사용되었다. 제안된 항적 데이터 모델링을 통하여 이상거동 선박의 사전 판별, 선박의 추측위치 계산 등에 응용하여 해상교통과제사의 의사결정을 지원하고자 한다.
본 논문에서는 저가이면서 높은 정확도를 갖는 GPS와 DR의 통합시스템 및 이 시스템의 위치 결정에 수반되는 오차문제를 고려한다. 이 통합 GPS/DR 시스템은 실시간 또는 비 실시간으로 고정밀도의 위치 정보를 제공하는 성능을 갖는다. DR 측정치에 영향을 주는 주요 오차 요인을 분석하여 이를 8개의 상태 변수의 모델로 표현하였다. 이들 변수의 상태 방정식을 사용하여 DR신호가 제공되는 매 순간에서 상태 변수값을 추산하기 위한 통합시스템용 비선형 필터를 개발한다, 1Hz의 DR 측정치와 3Hz로 제공되는 GPS 위치 정보를 위치 추산치에 대해 이 통합시스템의 정확도를 평가한다. 시뮬레이션을 통해 GPS신호가 정전되는 기간동안 통합 시스템의 성능을 두 가지 서로 다른 잡음모델에 대해 비교 검토한다. 두 잡음모델 중 하나는 단일잡용을 사용하는 반면에 또 다른 모델은 이중 잡음 모델을 채용한다. 시뮬레이션 결과로부터 이중 잡음 모델을 채용하는 GPS/DR 통합시스템은 단일 잡음 모델을 이용하는 경우에 비하여 측위성능이 우수함을 확인하였다.
HSDPA, WiBro, 모바일 디바이스 등의 정보통신 기술의 발전으로 사용자가 컴퓨터나 네트워크를 의식하지 않고 언제 어디서나 네트워크에 접속할 수 있는 유비쿼터스 컴퓨팅 환경의 구현이 가능해졌다. 이러한 유비쿼터스 컴퓨팅 환경에서 사용자의 위치에 따른 특정 정보를 제공하는 위치 기반 서비스(Location Based Service, LBS)의 중요성이 대두되고 있다. 본 논문에서는 관성 측정 장치(Inertial Measurement Unit, IMU)의 오차 보정을 위한 필터 및 알고리즘을 소개하고 실내 측위 보정을 위한 매핑 알고리즘을 제안한다. 제안하는 매핑 알고리즘은 지도를 자동으로 인식하여 교차로, 복도, 목적지로 분류하고 현재 위치를 인식하여 잘못된 매핑이 일어나지 않게 하고 사용자의 움직임 이벤트 발생 시 위치 검색의 효율을 높인다. 또한 유동적인 매핑계수를 두어 이동거리와 방향에 대한 오차 보정을 지속적으로 수행한다.
본 논문에서는 몬테 카를로 방법을 사용한 수중로봇의 위치추정 방법을 제안한다. 수중로봇의 위치추정은 자율 주행을 위한 기본 기능의 하나이다. 제안된 알고리즘에 의하면 추측항법(데드 레크닝 방법)의 약점인 위치 오차 누적 문제를 해결할 수 있다. 제안된 방법은 확률적인 방법으로 로봇 동작의 불확실성과 센서 정보의 불확실성을 처리한다. 특히 칼만 필터 방법과 달리, 로봇의 비선형 운동 특성과 센서의 비가우시안 출력 분포 특성을 모델링할 수 있다. 본 논문에서는 수중로봇 위치 추정에 몬테카를로 위치추정(Monte Carlo Localization : MCL, 이하 MCL로 표기함) 알고리즘을 적용하기 위하여 오일러각을 이용하여 모션모델을 구하였다. 또한 수중로봇에 모션모델과 센서모델을 적용하여 시뮬레이션을 구현하고, 이를 통해 수중로봇에 MCL 알고리즘의 적용 가능성을 보였다.
본 연구에서는 이동 로보트의 구동모터들의 회전수를 측정하는 두 개의 엔코 더와 로보트의 회전각 속도를 측정하는 자이로센서를 결합하여 주행중인 로보트의 자 세를 정확하게 추정할 수 있는 복수센서 시스템의 신호처리회로 및 알고리즘을 개발하 고 자이로센서의 측정방정식을 모델링하기 위하여 성능시험을 수행하였다. 그리고 확률이론을 유도된 측정방정식에 적용하여 본 복수센서 시스템의 출력 신호들을 효율 적으로 융합할 수 있는 센서데이터 융합알고리즘을 개발하여 사용된 측정센서들에 내 재하는 측정오차의 영향을 최소로 줄이고자 하였다. 제안된 융합알고리즘의 타당성 을 검증하기 위하여 주행실험을 수행하여 이동 로보트의 실제자세와 본 융합알고리즘 의 결과를 비교하였다.
본 논문에서는 파티클 필터 방법을 이용한 이동로봇의 SLAM(Simultaneous Localization and Mapping) 방법을 제안한다. 이동로봇의 SLAM은 지도가 주어지지 않는 환경에서 로봇 스스로 자신의 위치를 파악하는 것과 동시에 지도를 만드는 것이다. 제안된 방법은 로봇의 위치를 추정함과 동시에 특징점인 외부 비이컨들의 위치를 추정하는 방법을 다루고 있다. 특히 파티클 필터 방법을 적용하여 이동로봇과 특징점 위치를 파티클의 분포에 의해 확률적으로 표현한다. 제안된 SLAM방법은 이동로봇의 동작 뿐 아니라 특징점 위치의 불확실성을 고려한다. 따라서 매 샘플링 시각에 특징점의 위치 정보도 불확실성을 고려하여 예측되어진다. 제안된 방법의 성능을 시뮬레이션과 실험을 통하여 평가하였다. 제안된 방법은 비이컨으로 부터의 거리 정보에 불규칙한 잡음이 있는 환경에서도 실질적으로 사용가능한 지도 정보를 제공하였다. 또한 통상의 최소자승법이나 데드레크닝 방법에 비해서 보다 정확하고 강건하게 로봇의 위치를 추정하였다.
This research was conducted to design and develop a wired monitoring system for judging if sick or dead layers (SDL) exist in multi-tier layers battery (MLB) by machine vision, and to analyze its performance. In this study, 20 Brown Leghorn (Hi-Brown) layers aged 37 weeks old, were used as the experimental animals. The intensity of concern paid by layers on feed was over 90% during 5 minutes and 30 seconds after providing feed, and normal layers (NL) had been standing to take feed for that period. Therefore, in this study, the optimal judging time was set by this test result. The wired monitoring system developed was consisted of a driving device for carrying machine vision systems, a control program, a RS232 to RS485 convertor, an automatic positioning system, and an image capture system. An image processing algorithm was developed to find SDL in MLB by the processes of binary processing, erosion, expansion, labeling, and reckoning central coordinate of the captured images. The optimal velocity for driving unit was set up as 0.13 m/s by the test results for wired monitoring system, and the proximity switch was controlled not to be operated for 1.0 second after first image captured. The wired monitoring system developed was tested to evaluate the remote monitoring performance at lab-scale laying hen house. Results showed that its judgement success.ate on normal cage (without SDL) was 87% and that on abnormal cage (with SDL) was 90%, respectively. Therefore, it would be concluded that the wired monitoring system developed in this study was well suited to the purpose of this study.
캠퍼스를 자율적으로 주행하면서 내방객을 안내하는 안내로봇을 개발하였다. 이 로봇은 DGPS와 로봇 바퀴에 부착된 엔코더 정보를 이용하여 자신의 최적 위치를 평가하여 사전에 설정된 안내경로를 자율적으로 주행하면서 안내를 수행한다. 본 연구에서는 안내할 정보를 미리 순서대로 설정하는 기존 방법과 달리 이동 중 자신의 현재 위치를 평가하고 그 위치 주변에 안내할 정보가 있으면 그 정보를 이용하여 안내를 수행하는 위치기반 안내방법을 제안한다. 또한 안내효율을 극대화 할 수 있는 안내시나리오 구성방법을 제시한다. 개발된 안내로봇의 성능을 실제 캠퍼스 안내에 적용하여 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.