• Title/Summary/Keyword: Dead-reckoning

Search Result 194, Processing Time 0.127 seconds

Concurrent Mapping and Localization using Range Sonar in Small AUV, SNUUVI

  • Hwang Arom;Seong Woojae;Choi Hang Soon;Lee Kyu Yuel
    • Journal of Ship and Ocean Technology
    • /
    • 제9권4호
    • /
    • pp.23-34
    • /
    • 2005
  • Increased usage of AUVs has led to the development of alternative navigational methods that use the acoustic beacons and dead reckoning. This paper describes a concurrent mapping and localization (CML) scheme that uses range sonars mounted on SNUUV­I, which is a small test AUV developed by Seoul National University. The CML is one of such alternative navigation methods for measuring the environment that the vehicle is passing through. In addition, it is intended to provide relative position of AUV by processing the data from sonar measurements. A technique for CML algorithm which uses several ranging sonars is presented. This technique utilizes an extended Kalman filter to estimate the location of the AUV. In order for the algorithm to work efficiently, the nearest neighbor standard filter is introduced as the algorithm of data association in the CML for associating the stored targets the sonar returns at each time step. The proposed CML algorithm is tested by simulations under various conditions. Experiments in a towing tank for one dimensional navigation are conducted and the results are presented. The results of the simulation and experiment show that the proposed CML algorithm is capable of estimating the position of the vehicle and the object and demonstrates that the algorithm will perform well in the real environment.

An indoor fusion positioning algorithm of Bluetooth and PDR based on particle filter with dynamic adjustment of weights calculation strategy

  • Qian, Lingwu;Yuan, Bingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3534-3553
    • /
    • 2021
  • The low cost of Bluetooth technology has led to its wide usage in indoor positioning. However, some inherent shortcomings of Bluetooth technology have limited its further development in indoor positioning, such as the unstable positioning state caused by the fluctuation of Received Signal Strength Indicator (RSSI) and the low transmission frequency accompanied by a poor real-time performance in positioning and tracking moving targets. To address these problems, an indoor fusion positioning algorithm of Bluetooth technology and pedestrian dead reckoning (PDR) based on a particle filter with dynamic adjustment of weights calculation strategy (BPDW) will be proposed. First, an orderly statistical filter (OSF) sorts the RSSI values of a period and then eliminates outliers to obtain relatively stable RSSI values. Next, the Group-based Trilateration algorithm (GTP) enhances positioning accuracy. Finally, the particle filter algorithm with dynamic adjustment of weight calculation strategy fuses the results of Bluetooth positing and PDR to improve the performance of positioning moving targets. To evaluate the performance of BPDW, we compared BPDW with other representative indoor positioning algorithms, including fingerprint positioning, trilateral positioning (TP), multilateral positioning (MP), Kalman filter, and strong tracking filter. The results showed that BPDW has the best positioning performance on static and moving targets in simulation and actual scenes.

IMU 센서와 비전 시스템을 활용한 달 탐사 로버의 위치추정 알고리즘 (Localization Algorithm for Lunar Rover using IMU Sensor and Vision System)

  • 강호선;안종우;임현수;황슬우;천유영;김은한;이장명
    • 로봇학회논문지
    • /
    • 제14권1호
    • /
    • pp.65-73
    • /
    • 2019
  • In this paper, we propose an algorithm that estimates the location of lunar rover using IMU and vision system instead of the dead-reckoning method using IMU and encoder, which is difficult to estimate the exact distance due to the accumulated error and slip. First, in the lunar environment, magnetic fields are not uniform, unlike the Earth, so only acceleration and gyro sensor data were used for the localization. These data were applied to extended kalman filter to estimate Roll, Pitch, Yaw Euler angles of the exploration rover. Also, the lunar module has special color which can not be seen in the lunar environment. Therefore, the lunar module were correctly recognized by applying the HSV color filter to the stereo image taken by lunar rover. Then, the distance between the exploration rover and the lunar module was estimated through SIFT feature point matching algorithm and geometry. Finally, the estimated Euler angles and distances were used to estimate the current position of the rover from the lunar module. The performance of the proposed algorithm was been compared to the conventional algorithm to show the superiority of the proposed algorithm.

Gyro Signal Processing-based Stance Phase Detection Method in Foot Mounted PDR

  • Cho, Seong Yun;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권2호
    • /
    • pp.49-58
    • /
    • 2019
  • A number of techniques have been studied to estimate the position of pedestrians in indoor space. Among them, the technique of estimating the position using only the sensors attached to the body of the pedestrian without using the infrastructure is regarded as a very important technology for special purpose pedestrians such as the firefighters. In particular, it forms a research field under the name of Pedestrian Dead Reckoning (PDR). In this paper, we focus on a method for step detection which is essential when performing PDR using Inertial Measurement Unit (IMU) mounted on a shoe. Many researches have been done to detect the stance phase where the foot contacts the ground. Most of these methods, however, have a way to detect the specific size of the sensor signal and require thresholds for these methods. This has the difficulty of changing these thresholds if the user is different. To solve this problem, we propose a stance phase detection method that does not require any threshold value. It is expected that this result will make it easier to commercialize the technology because PDR can be implemented without user-dependent parameter setting.

Evaluation of the Use of Inertial Navigation Systems to Improve the Accuracy of Object Navigation

  • Iasechko, Maksym;Shelukhin, Oleksandr;Maranov, Alexandr;Lukianenko, Serhii;Basarab, Oleksandr;Hutchenko, Oleh
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.71-75
    • /
    • 2021
  • The article discusses the dead reckoning of the traveled path based on the analysis of the video data stream coming from the optoelectronic surveillance devices; the use of relief data makes it possible to partially compensate for the shortcomings of the first method. Using the overlap of the photo-video data stream, the terrain is restored. Comparison with a digital terrain model allows the location of the aircraft to be determined; the use of digital images of the terrain also allows you to determine the coordinates of the location and orientation by comparing the current view information. This method provides high accuracy in determining the absolute coordinates even in the absence of relief. It also allows you to find the absolute position of the camera, even when its approximate coordinates are not known at all.

Walking/Non-walking and Indoor/Outdoor Cognitive-based PDR/GPS/WiFi Integrated Pedestrian Navigation for Smartphones

  • Eui Yeon Cho;Jae Uk Kwon;Seong Yun Cho;JaeJun Yoo;Seonghun Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권4호
    • /
    • pp.399-408
    • /
    • 2023
  • In this paper, we propose a solution that enables continuous indoor/outdoor positioning of smartphone users through the integration of Pedestrian Dead Reckoning (PDR) and GPS/WiFi signals. Considering that accurate step detection affects the accuracy of PDR, we propose a Deep Neural Network (DNN)-based technology to distinguish between walking and non-walking signals such as walking in place. Furthermore, in order to integrate PDR with GPS and WiFi signals, a technique is used to select a proper measurement by distinguishing between indoor/outdoor environments based on GPS Dilution of Precision (DOP) information. In addition, we propose a technology to adaptively change the measurement error covariance matrix by detecting measurement outliers that mainly occur in the indoor/outdoor transition section through a residual-based χ2 test. It is verified through experiments on a testbed that these technologies significantly improve the performance of PDR and PDR/GPS/WiFi fingerprinting-based integrated pedestrian navigation.

Rényi Divergence 기반 이상치 검출을 통한 적응형 센서/이종 인프라 통합 보행자 항법 기술 (Adaptive Sensor/Heterogeneous Infrastructure Integrated Pedestrian Navigation Technology using Rényi Divergence-based Outlier Detection)

  • 권재욱;조성윤;유재준;서성훈
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권3호
    • /
    • pp.289-299
    • /
    • 2024
  • In the Pedestrian Dead Reckoning (PDR)/Global Positioning System (GPS)/Wi-Fi-integrated navigation system for indoor/outdoor continuous positioning of pedestrians, the process of detecting outliers in measurements is very important. When accurate location information from measurements is used, reliable correction data can be generated during the fusion filtering process. However, abnormal measurements may occur in certain situations, such as indoor/outdoor transitions, which can degrade filter performance and lead to significant errors in the estimated position. To address this issue, this paper proposes a method for detecting outliers in measurements based on Rényi Divergence (RD). When the deviation of the RD value is large, the measurements are considered outliers, and positioning is performed using only pure PDR. Based on experiments conducted with real data, it was confirmed that outliers were effectively detected for abnormal measurements, leading to an improvement in the performance of pedestrian navigation.

모델링 불확실성을 갖는 이산구조 비선형 시스템을 위한 유한 임펄스 응답 고정구간 스무딩 필터 및 DR/GPS 결합항법 시스템에 적용 (FIR Fixed-Interval Smoothing Filter for Discrete Nonlinear System with Modeling Uncertainty and Its Application to DR/GPS Integrated Navigation System)

  • 조성윤;김경호
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.481-487
    • /
    • 2013
  • This paper presents an FIR (Finite Impulse Response) fixed-interval smoothing filter for fast and exact estimating state variables of a discrete nonlinear system with modeling uncertainty. Conventional IIR (Infinite Impulse Response) filter and smoothing filter can estimate state variables of a system with an exact model when the system is observable. When there is an uncertainty in the system model, however, conventional IIR filter and smoothing filter may cause large errors because the filters cannot estimate the state variables corresponding to the uncertain model exactly. To solve this problem, FIR filters that have fast estimation properties and have robustness to the modeling uncertainty have been developed. However, there is time-delay estimation phenomenon in the FIR filter. The FIR smoothing filter proposed in this paper makes up for the drawbacks of the IIR filter, IIR smoothing filter, and FIR filter. Therefore, the FIR smoothing filter has good estimation performance irrespective of modeling uncertainty. The proposed FIR smoothing filter is applied to the integrated navigation system composed of a magnetic compass based DR (Dead Reckoning) and a GPS (Global Positioning System) receiver. Even when the magnetic compass error that changes largely as the surrounding magnetic field is modeled as a random constant, it is shown that the FIR smoothing filter can estimate the varying magnetic compass error fast and exactly with simulation results.

구조화된 환경에서의 가중치 템플릿 매칭을 이용한 자율 수중 로봇의 비전 기반 위치 인식 (Vision-based Localization for AUVs using Weighted Template Matching in a Structured Environment)

  • 김동훈;이동화;명현;최현택
    • 제어로봇시스템학회논문지
    • /
    • 제19권8호
    • /
    • pp.667-675
    • /
    • 2013
  • This paper presents vision-based techniques for underwater landmark detection, map-based localization, and SLAM (Simultaneous Localization and Mapping) in structured underwater environments. A variety of underwater tasks require an underwater robot to be able to successfully perform autonomous navigation, but the available sensors for accurate localization are limited. A vision sensor among the available sensors is very useful for performing short range tasks, in spite of harsh underwater conditions including low visibility, noise, and large areas of featureless topography. To overcome these problems and to a utilize vision sensor for underwater localization, we propose a novel vision-based object detection technique to be applied to MCL (Monte Carlo Localization) and EKF (Extended Kalman Filter)-based SLAM algorithms. In the image processing step, a weighted correlation coefficient-based template matching and color-based image segmentation method are proposed to improve the conventional approach. In the localization step, in order to apply the landmark detection results to MCL and EKF-SLAM, dead-reckoning information and landmark detection results are used for prediction and update phases, respectively. The performance of the proposed technique is evaluated by experiments with an underwater robot platform in an indoor water tank and the results are discussed.

Position Control of Mobile Robot for Human-Following in Intelligent Space with Distributed Sensors

  • Jin Tae-Seok;Lee Jang-Myung;Hashimoto Hideki
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.204-216
    • /
    • 2006
  • Latest advances in hardware technology and state of the art of mobile robot and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. And mobile service robot requires the perception of its present position to coexist with humans and support humans effectively in populated environments. To realize these abilities, robot needs to keep track of relevant changes in the environment. This paper proposes a localization of mobile robot using the images by distributed intelligent networked devices (DINDs) in intelligent space (ISpace) is used in order to achieve these goals. This scheme combines data from the observed position using dead-reckoning sensors and the estimated position using images of moving object, such as those of a walking human, used to determine the moving location of a mobile robot. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Using the a priori known path of a moving object and a perspective camera model, the geometric constraint equations that represent the relation between image frame coordinates of a moving object and the estimated position of the robot are derived. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot, and the Kalman filtering scheme is used to estimate the location of moving robot. The proposed approach is applied for a mobile robot in ISpace to show the reduction of uncertainty in the determining of the location of the mobile robot. Its performance is verified by computer simulation and experiment.