• Title/Summary/Keyword: Dead time compensation

Search Result 94, Processing Time 0.026 seconds

Online Dead Time Effect Compensation Algorithm of PWM Inverter for Motor Drive Using PR Controller

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1137-1145
    • /
    • 2017
  • This paper proposes the dead time effect compensation algorithm using proportional resonant controller in pulse width modulation inverter of motor drive. To avoid a short circuit in the dc link, the dead time of the switch device is surely required. However, the dead time effect causes the phase current distortions, torque pulsations, and degradations of control performance. To solve these problems, the output current including ripple components on the synchronous reference frame and stationary reference frame are analyzed in detail. As a results, the distorted synchronous d-and q-axis currents contain the 6th, 12th, and the higher harmonic components due to the influence of dead time effect. In this paper, a new dead time effect compensation algorithm using proportional resonant controller is also proposed to reduce the output current harmonics due to the dead time and nonlinear characteristics of the switching devices. The proposed compensation algorithm does not require any additional hardware and the offline experimental measurements. The experimental results are presented to demonstrate the effectiveness of the proposed dead time effect compensation algorithm.

Analysis and Compensation Control of Dead-Time Effect on Space Vector PWM

  • Shi, Jie;Li, Shihua
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.431-442
    • /
    • 2015
  • Dead-time element must be set into space vector pulsed width modulation signals to avoid short circuits of the inverter. However, the dead-time element distorts the output voltage vector, which deteriorates the performance of electrical machine drive system. In this paper, dead-time effect and its compensation control strategy are analyzed. Based on the analysis, the voltage distortion caused by dead-time is regarded as two disturbances imposed on dq axes in the rotor reference frame, which degenerates the current tracking performance. To inhibit the adverse effect caused by the dead-time, a control scheme using two linear extended state observers is proposed. This method provides a strong ability to suppress dead-time effects. Simulations and experiments are conducted on a permanent magnet synchronous motor drive system to demonstrate the effectiveness of the proposed method.

Dead Time Compensation Algorithm for the 3-phase Inverter (3상 인버터에 대한 간단한 데드타임 보상 알고리즘)

  • Kim, Hong Min;Baek, Seung Ho;Ahn, Jin Woo;Lee, Dong Hee
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.71-72
    • /
    • 2011
  • This paper presents a novel and direct dead time compensation method of the 3 phase inverter using space vector pulse width modulation(SVPWM) topology. In the turn on time calculation of the effective voltage, the dead time effect is directly compensated according to the current direction of the midium voltage reference. Since the turn on time of the effective voltage vector is affected by the dead time, the loss time is compensated to turn on time of the effective voltage vector. And the dead time is added to the calculated voltage vector switching times according to the current direction. For the more effective compensation, the direction of the midium phase current is considered by the practical direction and voltage drops in the power devices. The proposed method can compensate the dead time which is considered feedback error or direction of middle phase current without coordinate transform in added controller. The proposed dead time compensation scheme is verified by the computer simulation and experiments of 3 phase R L load.

  • PDF

Dead Time Compensation Algorithm for the 3-Phase Inverter using SVPWM (SVPWM 방식의 3상 인버터에 대한 간단한 데드타임 보상 알고리즘)

  • Kim, Hong-Min;Choo, Young-Bae;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.610-617
    • /
    • 2011
  • This paper proposes a novel and direct dead-time compensation method of the 3-phase inverter using space vector pulse width modulation(SVPWM) topology. The proposed dead-time compensation method directly compensates the dead-time to the turn-on time of the effective voltage vector according to the current direction of the medium voltage reference. Each phase voltages are determined by the switching times of the effective voltage vectors, and the practical switching times have loss according to the current direction by the dead-time effect in the 3-phase inverter. The proposed method adds the dead-time to the switching time of the effective voltage vector according to the current direction, so it does not require complex d-q transform and controller to compensate the voltage error. The proposed dead-time compensation scheme is verified by the computer simulation and experiments of 3-phase R-L load.

Dead time Compensation of Single-phase Grid-connected Inverter Using SOGI (SOGI를 이용한 단상 계통연계형 인버터의 데드타임 보상)

  • Seong, Ui-Seok;Lee, Jae-Suk;Hwang, Seon-Hwan;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.166-174
    • /
    • 2017
  • This study proposes a compensation method for the dead-time effects on a single-phase grid-connected inverter. Dead time should be considered in the pulse-width modulation gating signals to prevent the simultaneous conduction of switching devices, considering that a switching device has a finite switching time. Consequently, the output current of the grid-connected inverter contains odd-numbered harmonics because of the dead time and the nonlinear characteristics of the switching devices. The effects of dead time on output voltage and current are analyzed in this study. A new compensation algorithm based on second-order generalized integrator is also proposed to reduce the dead-time effect. Simulation and experimental results validate the effectiveness of the proposed compensation algorithm.

Compensation of Dead-Time in PWM Voltage Inverters

  • Somchaiwong, Nitipong;Chaidee, Ekkachai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.817-820
    • /
    • 2005
  • Dead-Time is necessary to prevent the shot circuit of the full bridge inverters in pulse width modulation. However the output voltage deviations is the result of the Dead-Time that decrease power from the out put voltage inverters. This paper presents the method that compensate power output voltage inverters loss in Dead-Time circuit for DC Motor Drives with full bridge voltage inverters. The compensation of Dead-Time method is a sample and a low-cost solution. The comparison between the test results and simulation by MATLAB&SIMULINK under the same condition is similar.

  • PDF

An Adaptive Dead-time Compensation Strategy for a Permanent Magnet Synchronous Motor Drive Using Neural Network

  • Urasaki Naomitsu;Senjyu Tomonobu;Funabashi Toshihisa;Sekine Hideomi
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.279-289
    • /
    • 2006
  • This paper presents a neural network based adaptive dead-time compensation strategy for an inverter fed permanent magnet synchronous motor drive. The neural network is used for identifying the dead-time compensation time (DTCT) that includes an equivalent dead-time, turn-on/off time and on-state voltage components of the voltage source inverter. In order to train the neural network, desired DTCTs for eight operating points are prepared as training data. The trained neural network can identify a desired DTCT for any operating point because it has the capability of the interpolation. The accuracy of the identified DTCT is experimentally confirmed by comparing the calculated active power with a measured one.

Dead Time Compensation Scheme for a PWM Inverter-fed PMSM Drive Using MRAC Scheme and Coordinate Transformation (MRAC 기법과 좌표변환을 이용한 PWM 인버터 구동 PMSM의 데드타임 보상기법)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.29-37
    • /
    • 2012
  • A simple and effective dead time compensation scheme for a PWM inverter-fed permanent magnet synchronous motor (PMSM) drive using the model reference adaptive control (MRAC) and coordinate transformation is presented. The basic concept is to first transform a time-varying disturbance caused by the dead time and inverter nonlinearity into unknown constant or slowly-varying one by the coordinate transformation, and then use the MRAC design technique to estimate this parameter in the stationary reference frame. Since the MRAC scheme is a suitable way of estimating such a parameter, the control performance can be significantly improved as compared with the conventional observer-based method tracking time-varying parameters. In the proposed scheme, the disturbance voltage caused by the dead time is effectively estimated and compensated by on-line basis without any additional circuits nor existing disadvantages as in the conventional methods. The asymptotic stability is proved and the effectiveness of the proposed scheme is verified.

Dead Time Compensation Scheme Independent of Parameter Variations in an Inverter-fed PMSM Drive (파라미터 변화에 무관한 인버터 구동 PMSM의 데드타임 보상 기법)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.124-134
    • /
    • 2011
  • A new dead time compensation scheme that can exactly estimate the dead time and inverter nonlinearity under parameter variations is proposed for a PWM inverter-fed PMSM drive. The proposed scheme uses the fact that the sixth harmonic component in total disturbance estimated under the presence of various uncertainties is mainly caused by the dead time and inverter nonlinearity. The total disturbance due to the parameter variations as well as the dead time and inverter nonlinearity is estimated by the adaptive scheme. The sixth harmonic component is extracted from this total disturbance through harmonic analysis. The obtained sixth harmonic is processed by the PI controller to estimate the disturbance caused by the dead time and inverter nonlinearity in the stationary reference frame. The effectiveness of the proposed scheme is verified. Without requiring an additional hardware, the proposed scheme can effectively compensate the dead time and inverter nonlinearity even under the parameter variations.