• Title/Summary/Keyword: Dead reckoning

Search Result 194, Processing Time 0.024 seconds

Neural network based position estimation of mobile robot in slippery environment (Slip이 발생할 때 신경회로망을 이용한 이동로보트의 위치추정에 관한 연구)

  • 최동엽;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.133-138
    • /
    • 1993
  • This paper presents neural network based position estimation method in slippery environment as an approach to solve one of problems which are engaged in dead reckoning method. Position estimator is composed of slip detector and linear velocity estimator. Both of them are based on the fact that dynamic characteristic of mobile robot in slippery environment is different from the case without slip. To find out the dynamic relation among driving torque, angular acceleration of driving wheel and linear acceleration of mobile robot, accelerometer is used for measuring acceleration of mobile robot and neural network is used for dynamic system identifier in slippery environment.

  • PDF

A Study In Movement of Wheeled Mobile Robot Via Sensor Fusion (센서융합에 의한 이동로봇의 주행성 연구)

  • Shin, Hui-Seok;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.584-586
    • /
    • 2005
  • In this paper, low cost inertial sensor and compass were used instead of encoder for localization of mobile robot. Movements by encoder, movements by inertial sensor and movements by complementary filter with inertial sensor and compass were analyzed. Movement by complementary filter was worse than by only inertial sensor because of imperfection of compass. For the complementary filter to show best movements, compass need to be compensated for position error.

  • PDF

Localization Performance Enhancement on GPS Interfering Spot (GPS 음영지역 극복을 위한 이동로봇의 실험적 위치추정)

  • Kim, Ji-Yong;Lee, Ji-Hong;Byun, Jae-Min
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.115-117
    • /
    • 2009
  • This paper presents localization performance enhancement on GPS interfering spot for mobile robot. Localization system applied Extended Kalman filter algorithm that utilized Diffrential GPS and odometry, inertial sensors. In this paper, different noise covariance is applied to Extended Kalman Filter according to the GPS quality. Experiment results show that proposed localization system improve considerably localization performance of mobile robots.

  • PDF

An Effective Shared-Slate Management using Network Delay Estimation in Client-Sewer-Based Networked Virtual Environment (클라이언트-서버기반 분산가상환경에서의 지연예측을 통한 효율적 공유상태관리)

  • 심광현;최병태;김종성;오원근
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.189-192
    • /
    • 2000
  • This paper presents a new DR(Dead Reckoning) algorithm in client-server-based networked virtual environment using network delay estimation. In the algorithm, a new update packet is sent to server (or client) whenever the difference of current real value and tracking value after network delay is larger than threshold. To confirm the proposed algorithm, a test network game was implemented. Through iterative field tests, we knew that this algorithm provides fair service and stability.

  • PDF

Revising the DR (Dead-Reckoning) Angles Data Using Steering Wheel Sensor and Gyro Sensor (Telematics System 자립항법에서 Gyro Sensor를 이용한 Steering Wheel Angle Data 보정)

  • Park, Jin-Sup;Chung, Ki-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.149-150
    • /
    • 2007
  • By adding Gyro sensor to support the steering wheel angle sensor, an improved functional DR solution is proposed in this paper The proposed angle data algorism is developed based on the steering wheel with Gyro sensor for DR. The Gyro sensor support the error of steering wheel sensor to improve the angle data for the DR algorism.

  • PDF

Azimuth Tracking Control of an Omni-Directional Mobile Robot(ODMR) Using a Magnetic Compass (마그네틱 콤파스 기반의 전 방향 로봇의 방위각 제어)

  • Lee, Jeong-Hyeong;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.132-138
    • /
    • 2009
  • In this paper, control of an omni-directional mobile robot is presented. Relying on encoder measurements to define the azimuth angle yields the dead-reckoned situation which the robot fails in localization. The azimuth angle error due to dead-reckoning is compensated and corrected by the magnetic compass sensor. Noise from the magnetic compass sensor has been filtered out. Kinematics and dynamics of the omni-directional mobile robot are derived based on the global coordinates and used for simulation studies. Experimental studies are also conducted to show the correction by the magnetic compass sensor.

Indoor Localization Algorithm Using Smartphone Sensors and Probability of Normal Distribution in Wi-Fi Environment (Wi-Fi 환경에서 센서 및 정규분포 확률을 적용한 실내 위치추정 알고리즘)

  • Lee, Jeong-Yong;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1856-1864
    • /
    • 2015
  • In this paper, the localization algorithm for improving the accuracy of the positioning using the Wi-Fi fingerprint using the normal distribution probability and the built-in typed accelerometer sensor, the gyroscope sensor of smartphone in the indoor environment is proposed. The experiments for analyzing the performance of the proposed algorithm were carried out at the region of the horizontal and vertical 20m * 10m in the engineering school building of our university, and the performance of the proposed algorithm is compared with the fingerprint and the DR (dead reckoning) while user is moving according to the assigned region. As a result, the maximum error distance in the proposed algorithm was decreased to 2cm and 36cm compared with two algorithms, respectively. In addition to this, the maximum error distance was also less than compared with two algorithms as 16.64cm and 36.25cm, respectively. It can be seen that the fingerprint map searching time of the proposed algorithm was also reduced to 0.15 seconds compared with two algorithms.

One-dimensional Positioning using Iterative Linear Regression Based on Received Signal Strength and Mobility Information (반복선형회귀를 이용한 수신 신호 세기와 이동성 정보에 기반한 1차원 위치 추정)

  • Lee, Dong-Jun;Kim, Da-Yeong;Lee, Eun-Hye
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.128-133
    • /
    • 2020
  • In this study, an 1-dimensional positioning method using iterative linear regression for path loss expression is proposed. In the proposed method, received signal strengths (RSS) measured in several locations and distances between the measuring locat ions obtained by dead reckoning are used to derive a linear regression for the path loss from the transmitting beacon. In the proposed method, for the distance between the transmitting beacon and a target measuring location, several tentative values are assumed. For each tentative value, a linear regression is obtained. Among the linear regression expressions, the one closest to the known reference RSS value is selected and used to derive the distance to the target location. Test results show that the proposed method is more accurate than path loss model.

Multi-sensor Fusion Based Guidance and Navigation System Design of Autonomous Mine Disposal System Using Finite State Machine (유한 상태 기계를 이용한 자율무인기뢰처리기의 다중센서융합기반 수중유도항법시스템 설계)

  • Kim, Ki-Hun;Choi, Hyun-Taek;Lee, Chong-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.33-42
    • /
    • 2010
  • This research propose a practical guidance system considering ocean currents in real sea operation. Optimality of generated path is not an issue in this paper. Way-points from start point to possible goal positions are selected by experienced human supervisors considering major ocean current axis. This paper also describes the implementation of a precise underwater navigation solution using multi-sensor fusion technique based on USBL, GPS, DVL and AHRS measurements in detail. To implement the precise, accurate and frequent underwater navigation solution, three strategies are chosen. The first one is the heading alignment angle identification to enhance the performance of standalone dead-reckoning algorithm. The second one is that absolute position is fused timely to prevent accumulation of integration error, where the absolute position can be selected between USBL and GPS considering sensor status. The third one is introduction of effective outlier rejection algorithm. The performance of the developed algorithm is verified with experimental data of mine disposal vehicle and deep-sea ROV.

Programming Toolkit for Localization and Simulation of a Mobile Robot (이동 로봇 위치 추정 및 시뮬레이션 프로그래밍 툴킷)

  • Jeong, Seok Ki;Kim, Tae Gyun;Ko, Nak Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.332-340
    • /
    • 2013
  • This paper reports a programming toolkit for implementing localization and navigation of a mobile robot both in real world and simulation. Many of the previous function libraries are difficult to use because of their complexity or lack of usability. The proposed toolkit consist of functions for dead reckoning, motion model, measurement model, and operations on directions or heading angles. The dead reckoning and motion model deals with differential drive robot and bicycle type robot driven by front wheel or rear wheel. The functions can be used for navigation in both real environment and simulation. To prove the feasibility of the toolkit, simulation results are shown along with the results in real environment. It is expected the proposed toolkit is used for test of algorithms for mobile robot navigation such as localization, map building, and obstacle avoidance.