• Title/Summary/Keyword: De-Snowing

Search Result 2, Processing Time 0.015 seconds

Perceptual Generative Adversarial Network for Single Image De-Snowing (단일 영상에서 눈송이 제거를 위한 지각적 GAN)

  • Wan, Weiguo;Lee, Hyo Jong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.10
    • /
    • pp.403-410
    • /
    • 2019
  • Image de-snowing aims at eliminating the negative influence by snow particles and improving scene understanding in images. In this paper, a perceptual generative adversarial network based a single image snow removal method is proposed. The residual U-Net is designed as a generator to generate the snow free image. In order to handle various sizes of snow particles, the inception module with different filter kernels is adopted to extract multiple resolution features of the input snow image. Except the adversarial loss, the perceptual loss and total variation loss are employed to improve the quality of the resulted image. Experimental results indicate that our method can obtain excellent performance both on synthetic and realistic snow images in terms of visual observation and commonly used visual quality indices.

Deep Residual Networks for Single Image De-snowing (이미지의 눈제거를 위한 심층 Resnet)

  • Wan, Weiguo;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.525-528
    • /
    • 2019
  • Atmospheric particle removal is a challenging task and attacks wide interests in computer vision filed. In this paper, we proposed a single image snow removal framework based on deep residual networks. According to the fact that there are various snow sizes in a snow image, the inception module which consists of different filter kernels was adopted to extract multiple resolution features of the input snow image. Except the traditional mean square error loss, the perceptual loss and total variation loss were employed to generate more clean images. Experimental results on synthetic and realistic snow images indicated that the proposed method achieves superior performance in respect of visual perception and objective evaluation.