• Title/Summary/Keyword: De-Icing System

Search Result 24, Processing Time 0.026 seconds

Study for Certification of Aircraft De-icing System (항공기 제빙 시스템의 인증에 대한 연구)

  • Jun, Jonghyub
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • De-icing system is essential for any aircraft to fly in icing conditions. So there are two kinds of aircraft-those that are certificated for flight in icing conditions and those that are not. Icing certification involves a rigorous testing program, and relatively few light aircraft carry this approval. From a legal perspective, aircraft that do not have all required ice protection equipment installed and functional are prohibited from venturing into an area where icing conditions are known. There are a few kinds of de-icing system. It is necessary to review the systems in point of aircraft certification considering the operational and safety issues.

COMPUTATIONAL ANALYSIS OF AN ELECTRO-THERMAL ICE PROTECTION SYSTEM IN ATMOSPHERIC ICING CONDITIONS (대기 결빙 조건에서의 전기열 방식 결빙보호 시스템에 관한 전산해석)

  • Raj, L.P.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Atmospheric icing may have significant effects not only on safety of aircraft in air, but also on performance of wind turbine and power networks on ground. Thus, ice protection measure should be developed to protect these systems from icing hazards. A very efficient method is the electro-thermal de-icing based on a process by which ice accretion is melted and blown away through aerodynamic forces. In this computational study, a state-of-the-art icing code, FENSAP-ICE, was used for the analysis of electro thermal de-icing system. Computational results including detailed conjugate heat transfer analysis were then validated with experimental data. Further, the computational model was applied to the DU21 airfoil section of NREL 5MW wind turbine with calculated heater parameters.

The Study of FAA's certification policy for approving the ground use of deicing/anti-icing fluids on airplane (항공기용 결빙방지액의 지상 사용승인을 위한 FAA의 최근 인증정책 연구)

  • Kim, You gwang
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.51-57
    • /
    • 2013
  • This study describes the Federal Aviation Administration(FAA) certification policy for approving the use of Type II, III, and IV deicing/anti-icing fluids on small category airplanes. These fluids can be characterized as non-Newtonian, pseudo-plastic fluids, also known as "thickened" fluids. Deicing fluids are used before takeoff to remove frost or ice contamination, while anti-icing fluids are used before takeoff to prevent frost or ice contamination from occurring for a period of time(referred to as "holdover time") after application. Thickened deicing/anti-icing fluids can affect airplane performance and handling characteristics and their residue may cause stiff or frozen flight controls. This study also describes an approval process that may be used by type certificate holders and applicants for a type certificate under parts 23 to support operational use of these fluids on their airplanes.

Temperature Analysis of Overhead Contact line Using De-icing System (해빙 시스템을 이용한 전차선 온도 특성에 관한 연구)

  • Park, Young;Kwon, Sam-Young;Jung, Ho-Sung;Park, Hyun-Jun;Cho, Young-Hyeon;Kim, Joo-Rak;Ahn, Byeong-Lib;Won, Woo-Sik;Lee, Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.601-602
    • /
    • 2005
  • In the cold and temperate regions of Korea the icing and ice coats on 25 kV overhead contact wire during winter is a very serious problem. This generates shocks at the mechanical interface of the collecting strips of the pantograph and the contact wire and extra electrical resistance, which may affect quality of current collection at the contact wire / collecting strips of pantograph interface. De-icing operations should be performed just before train operation to avoid the formation of another ice layer. This paper presents temperature analysis of the de-icing system which could be applied to the overhead contact wire of railways.

  • PDF

Properties of De/Anti-icing Fluid for High Speed Railway Rolling Stock Based on Propylene-glycol Containing Water Repellent Agent (발수 성분을 포함하는 프로필렌글리콜(PG) 기반 고속철도차량용 제·방빙액의 특성)

  • Jin-Myeong, Park;Tae-Hyun, Kim;Jung-Mu, Yang;Cha-Jung, Yun;Hong-Ki, Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.69-74
    • /
    • 2023
  • As a chemical de-icing method, propylene glycol de-icing fluid is applicable for melting ice caused by snow and ice adhering to the lower part of high-speed rail rolling stock and bogie parts in winter. By spraying propylene-glycol de-icing fluid on high-speed rail rolling stock and bogie parts in advance to minimize snow adhesion, ice-melting efficiency can be further improved. In the case of high-speed rail rolling stock, even if propylene-glycol de-icing fluid is sprayed, the anti-icing performance is poor because the fluid is almost lost on the surface of the vehicle when operating at high speed. In this study, in order to prevent freezing caused by snow and ice adhering to the lower part of high-speed rail rolling stock and bogie parts, we have investigated the properties of propylene-glycol de/anti-icing fluid containing water-repellent agents that prevent surface freezing. We tried to find the optimal component for de/anti-icing fluid for high-speed rail rolling stock by evaluating the ice melting performance, contact angle, and anti-icing performance according to the types of water-repellent agent. As a result of the evaluation, it was confirmed that an de/anti-icing fluid containing an ethoxysilane-type water repellent agent was most suitable.

Analysis of Temperature on Overhead Contact Line Using De-icing System (전차선 해빙시스템의 온도 상승효과)

  • Park Young;Kwon Samyoung;Jung Hosung;Cho Younghyun;Park Hyunjune;Lee Kiwon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.724-729
    • /
    • 2005
  • Winter weather condition can cause icing and ice coats on 25 kV overhead contact wire. This generates shocks at the mechanical interface of the collecting strips of the pantograph and the contact wire and extra electrical resistance, which may affect quality of current collection at the contact wire / collecting strips of pantograph interface. De-icing operations should he performed just before train operation to avoid the formation of another ice layer. Thus, the work in this paper is investigation and analysis of de-icing system which could be applied to the electric car line of railways.

  • PDF

A Study on the Temperature Feature of Electric Car Line by the Climatic Change for the De-icing System (해빙시스템을 위한 기후변화에 따른 전차선 온도특성에 관한 연구)

  • Jung, Myung-Sub;Kim, Yong;Lee, Byung-Song;Kwon, Sam-Young;Jung, Ho-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.305-307
    • /
    • 2005
  • In the cold and temperate regions of Korea the icing and ice coats on 25[kV] electric car line during winter is a very serious problem. This generates shocks at the mechanical interface of the collecting strips of the pantograph and the contact wire and extra electrical resistance, which may affect quality of current collection at the contact wire / collecting strips of pantograph interface. De-icing operations should be performed just before train operation to avoid the formation of another ice layer. This paper presents temperature analysis of the de-icing system which could be applied to the electric car line of railways.

  • PDF

Temperature Analysis of the De-icing System for Overhead Contact Wire (전차선로 해빙시스템의 온도특성)

  • Ko, Byeong-Hun;Park, Young;Jung, Ho-Sung;Kwon, Sam-Young;Park, Hyun-June
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.1004-1008
    • /
    • 2007
  • The ice coats are built on 25 kV overhead contact wire when the temperature is lower than $0^{\circ}C$. It generates shockwaves at the mechanical interface of the collecting strips of the pantograph and the contact wire. The de-icing processes should be performed to avoid shockwaves which are generated by a pulsed high-voltage arc discharge. This paper presents temperature analysis of the de-icing effects which could be applied to the overhead contact wire of railways using Joule heat. The results show that 350 A is the proper current for $0^{\circ}C$ conductor according to environmental condition such as velocity of air stream, ambient temperature and moisture.

Ice Melting Capacity Evaluation of Applicable Materials of De-icing Fluid for High Speed Railway Rolling Stock (고속철도차량용 제빙액으로의 적용가능물질에 대한 융빙성능 평가)

  • Park, Gyoung-Won;Lee, Jun-Ku;Lee, Hong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.384-388
    • /
    • 2019
  • In winter season, the snow and ice accretion on the bottom of the high speed railway rolling stock and boogie part has fallen at a high speed from the ballast section (gravel section for the transmission of the rolling stock load received by sleepers and fixing sleepers), causing the gravel to be scattered, thereby damaging the railway rolling stock structures and facilities. In order to solve these problems, the gravel scattering prevention net, manual de-icing, and movable hot air machine were used, but their efficiency was low. For the more efficient de-icing than ever before, an optimum material for de-icing fluid for high speed railway rolling stock was developed by evaluating the ice melting capacity, kinematic viscosity, evaporation of the material used as a chemical de-icing fluid. Four kinds of organic acid salts (sodium formate, sodium acetate, potassium formate and potassium acetate) and two different alcohols (propylene glycol, glycerol) were used as evaluation materials. Potassium formate, potassium acetate, and propylene glycol had similar ice melting capacities in the indoor test, but the propylene glycol showed the best ice melting capacity in spraying the system simulation test. This is because the kinematic viscosity of propylene glycol was 2.989029 St, which is higher than those of other materials therefore, it could stay longer on the ice and de-icing. In addition, potassium formate and potassium acetate were difficult to be used since the crystals precipitated and adversely affected the appearance of the rolling stock. The propylene glycol is the most optimum as an de-icing fluid for the high speed railway rolling stock.

A Study on Temperature Variation of Contact Wire by De-icing System (해빙시스템에 의한 전차선의 온도변화에 관한 연구)

  • Ahn, Byeong-Lib;Lee, Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.69-74
    • /
    • 2008
  • The frost and freezing on contact wire in winter is a very serious problem Shocks at the mechanical interface of the collecting strips of the pantograph and the contact wire. Extra electrical resistance, which may affect quality of current collection at the contact wire / collecting strips of pantograph interface. De-icing system is to melt frost or freezing in contact wire. The principle of do-icing system is to melt frost or ice by Joule heat of contact wire impedance. The temperature of the contact wire was increased with increasing the current. But temperature of contact wire was decreased with increasing the velocity of the wind.