• Title/Summary/Keyword: Dc/Dc converter

Search Result 3,434, Processing Time 0.028 seconds

Buck and Half Bridge Series DC-DC Converter (강압형과 하프 브리지 직렬형 DC-DC 컨버터)

  • Kim Chang-Sun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.616-621
    • /
    • 2005
  • We considered of the buck and half bridge series DC-DC converter. It has good applications in areas with low voltage/high current, wide input voltage. The buck converter ratings and the half bridge converter ratings are $36\~72V$ input and 22V/5A output, $19\~24V$ input and 3.3V/30A output, respectively. Developed the buck and half Bridge series DC-DC converter ratings are of $36\~72V$ input and 3.3V/30A output. The buck converter is operated with zero voltage switching process to reduce the switching losses. The $80.1\%\~97.6\%$ of the efficiency is measured at $18.4{\mu}H$ output filter inductance of buck converter. In the half bridge converter, the $86\%\~96.4\%$ efficiency is measured at 150kHz switching frequency with PQI core. In the case of synchronized the buck and half bridge DC-DC converter, the measured efficiency is higher than that of the unsynchronized converter. In the synchronized converter, the maximum efficiency is measured up to $92.3\%$ with PQI core at 150kHz. 7A output.

Study on conversion efficiency of RF-DC converter with series diode (직렬 연결 RF-DC 변환기의 변환효율에 관한 연구)

  • Choi, Ki-Ju;Hwang, Hee Yong
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.69-73
    • /
    • 2010
  • In this paper, we designed the RF-DC converter used in wireless power transmission system and studied how to design the RF-DC converter of high conversion efficiency. The RF-DC converter operate at 2.45GHz and the diode is connected with series. The RF-DC converter uses shorted stub for DC loop and matching. We can divide the RF-DC converter circuit into four blocks. The reflection coefficients between the blocks were optimized for the maximum conversion efficiency at 0 dBm input power and $1300{\Omega}$ load impedance. The final design of the RF-DC converter has a 52 percent conversion efficiency.

  • PDF

Implementation of PID controller for DC-DC converter using microcontroller (마이크로컨트롤러를 이용한 DC-DC 변환의 PID 제어기 설계)

  • Awouda, Ala Eldin Abdallah;Lee, Yong-Hui;Yi, Jae-Young;Yi, Cheon-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.83-86
    • /
    • 2002
  • This paper presents an implementation of Pill controller for DC-DC converter using the microcontroller. The features of the microcontroller such as the on chip ADC and Pulse width Modulator (PWM) eliminate the external components needed to perform these functions. The duty rate cycle for the DC-DC converter can be updated every time when the (ADC) conversation and the calculation time are finished. The stable response can be obtained for any kind of DC-DC converters. The SMPS controller looks at the converter output, compares the output to a set point, performs a control algorithm (Pill algorithm) and finally applies the algorithm output to the PWM. PWM output is then used to drive the DC-DC converter. Figure (1) shows a simplified block diagram of a complete DC-DC converter system.

  • PDF

Study on the resonant HF DC/DC Converter for the weight reduction of the Auxiliary Power Supply of MAGLEV (자기부상열차 보조전원장치 경량화를 위한 공진형 HF DC/DC Converter 연구)

  • Lee, Kyoung-Bok;Lim, Ji-Young;Jo, Jeong-Min;Kim, Jin-Su;Han, Young-Jae;Choi, Sung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1825-1831
    • /
    • 2011
  • One of the major trends in traction power electronics is increasing the switching frequencies. The advances in the frequency elevation have made it possible to reduce the total size and weight of the passive components such as capacitors, inductors and transformers in the DC/DC converter and hence to increase the power density. The traction dynamic performance is also improved. This document describes several aspects relating to the design of resonant DC/DC converter operating at high frequency(10KHz) and the converter topologies and the control method of MAGLEV, which result in soft switching, are discussed.

  • PDF

Analysis of A Fixed Frequency LCL-type DC-DC Converter Including the Effect of High-Frequency Transformer (변압기 영향을 포함한 고정주파수 LCL형 DC-DC 컨버터 해석)

  • Park, Sangeun;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.81-87
    • /
    • 2016
  • An LCL-type Isolated dc-dc converter operating for constant output voltage is analyzed, including the effect of a high frequency transformer using ac complex circuit approximation. Its solution is derived and is used to obtain the characteristics of the proposed converter. The analyses show through converter modeling, phasor diagram and gain comparison that inclusion of a high frequency transformer results in introduction of magnetizing inductance and leakage inductances at conventional LCL dc-dc converter with ideal transformer. The theoretical and simulation results are presented in case of the wide variations in input voltage and load current in detail. Analysis and simulation results observed that introduction of a transformer in the dc-dc converter had considerable effect on the performance, especially in the case of low output voltage and large load.

Switched Inductor Z-Source AC-DC Converter

  • Sedaghati, Farzad;Hosseini, Seyed Hossein;Sarhangzadeh, Mitra
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.67-76
    • /
    • 2012
  • Due to the increasing amount of applications of power electronic ac-dc converters, it is necessary to design a single-stage converter that can reliably perform both buck and boost operations. Traditionally, this can be achieved by double-stage conversion (ac/dc-dc/dc) which ultimately leads to less efficiency and a more complex control system. This paper discusses two types of modern ac-dc converters. First, the novel impedance-source ac-dc converter, abbreviated as custom Z-source rectifier, is analyzed; and then, switched inductor (SL) Z-source ac-dc converter is proposed. This paper describes the Z-source rectifiers' operating principles, the concepts behind them, and their superiorities. Analysis and simulation results show that the proposed custom Z-source rectifier can step up and step down voltage; and the main advantage of the SL Z-source ac-dc converter is its high step-up capability. Low ripple of the output dc voltage is the other advantage of the proposed converters. Finally, the SL Z-source ac-dc converter is compared with the custom Z-source ac-dc converter.

High-Efficiency Full-Bridge DC-DC Converter with Current-Doubler Rectifier with Asymmetric Pulse-Width Modulation (비대칭 펄스 폭 변조 방식의 배전류 정류기 회로를 적용한 고효율 풀-브릿지 DC-DC 컨버터)

  • Yang, Min-Kwon;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.280-289
    • /
    • 2015
  • A high-efficiency full-bridge DC-DC converter with a current-doubler rectifier and an asymmetric pulse-width modulation is proposed. Through the asymmetric pulse-width modulation, the proposed converter achieves zero-voltage switching of power switches without the circulating currents. The proposed converter reduces the output current ripple through the current-doubler rectifier. A control strategy is suggested for the proposed converter to charge battery banks. A constant current and constant voltage charging is performed. The proposed converter achieved a higher efficiency compared with the conventional full-bridge DC-DC converter with a phase-shift modulation. The performance of the proposed converter is evaluated by the experimental results for a 1.0 kW prototype circuit.

The Secondary LLC Series Resonant Converter for the Boost DC/DC Converter (변압기 2차측 LLC 직렬공진컨버터 적용 승압형 DC/DC 컨버터)

  • Lee Hyun-Kwan;Cha In-Su;Lee Gi-Sik;Chung Bong-Geun;Kang Sung-In;Kim Eun-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.8
    • /
    • pp.423-429
    • /
    • 2006
  • Recently, the high frequency isolated boost DC/DC converter has been widely used for the PCS (Power Conditioning System) system because of its small size and low cost. However, the high frequency isolated boost DC/DC converters applied the conventional voltage-fed converter and current-fed converter have the problems such as the high conduction losses and the surge voltage due to the high circulating current and the leakage inductance, respectively. To overcome this problems, in this paper the secondary LLC resonant converter is proposed, and the experimental results of the secondary LLC series resonant converter for boost DC/DC converter are verified on the simulation based on the theoretical analysis and the 700W experimental prototype.

A Novel SLLC Series Resonant Converter for The Boost DC/DC Converter (SLLC 직렬공진컨버터 적용 승압형 DC/DC 컨버터)

  • Kim, Eun-Soo;Kang, Sung-In;Chung, Bong-Geun;Cha, In-Su;Yoon, Jeong-Phil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.56-64
    • /
    • 2007
  • Recently, the high frequency link boost DC/DC converter has been used widely for PCS (Power Conditioning System) because of the requirements of small size and low cost. However, the high frequency link boost DC/DC converters applied the conventional voltage-fed converter and current-fed converter have some problems like high conduction losses and high surge voltage due to high circulating current and leakage inductance, respectively. To improve these problems, a novel secondary LLC (called SLLC) series resonant converter is proposed in this paper and its theoretical analysis, its operating waveforms, simulation and experimental results for a boost DC/DC converter using SLLC series resonant topology verifies the proposed topology. 800W experimental prototype is tested.

Analysis and Implementation of a DC-DC Converter for Hybrid Power Supplies Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1438-1445
    • /
    • 2015
  • A new DC-DC power converter is researched for renewable energy and battery hybrid power supplies systems in this paper. At the charging mode, a renewable energy source provides energy to charge a battery via the proposed converter. The operating principle of the proposed converter is the same as the conventional DC-DC buck converter. At the discharging mode, the battery releases its energy to the DC bus via the proposed converter. The proposed converter is a non-isolated high step-up DC-DC converter. The coupled-inductor technique is used to achieve a high step-up voltage gain by adjusting the turns ratio. Moreover, the leakage-inductor energies of the primary and secondary windings can be recycled. Thus, the conversion efficiency can be improved. Therefore, only one power converter is utilized at the charging or discharging modes. Finally, a prototype circuit is implemented to verify the performance of the proposed converter.