• 제목/요약/키워드: Days to harvest

검색결과 914건 처리시간 0.03초

담배의 성숙에 따른 수확엽의 생화학적 활성변화 (Changes of Biochemical Activities in Harvested Leaves of Tobacco Plant During Maturing Period)

  • 이상각;강병화;이학수;배길관;노재영
    • 한국연초학회지
    • /
    • 제19권2호
    • /
    • pp.77-82
    • /
    • 1997
  • In order to investigate biochemical activities of harvested tobacco leaves, photosynthetic rate, soluble protein contents, and peroxidale activities were analysed during different maturing period. Physiological activities of harvested leaves during maturing period were higher in topped than those of non-topped plants. Chlorophyll content and photosynthetic rate in both topped and non-topped plants decreased at 4 days and 3 days before harvest, respectively. The chloroplast numbers in topped and non-topped plants decreased at 3 days and 5 days before harvest, respectively. Changes of soluble protein and total RNA contents showed similar patterns during maturing period. Soluble protein contents were slightly decreased from 5 days before harvest in topped plants, but decreased drastically from 3 days before harvest in non-topped plants. Not much changes were found in total RNA contents in topped plants until 2 days before harvest, and it was largely decreased after 5 days before harvest in non-topped plants. The peroxidase activities drastically decreased in topped plants and increased in non-topped plants after 3 days before harvest during maturing period. The largest change of biochemical activities in tobacco leaves during maturing periods were observed at 3 days before harvest.

  • PDF

Analysis of fruit growth and post-harvest characteristics of hydroponically grown 'K3' melons (Cucumis melo L.) harvested at different days after fruit setting and stored at low temperature

  • Jung-Soo Lee;Ju Youl Oh
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.341-355
    • /
    • 2022
  • This research was to examine the differences in post-harvest quality of melons depending on the harvest time after fruit setting. Musk melon cultivar 'K3' plants were grown in glass house conditions with a hydroponic system, and the fruits were harvested at 50, 60, and 70 days after fruit setting. The post-harvest characteristics of melons stored at 7℃ were measured over 32 days. The harvested fruits at 50, 60, 70 days after fruit setting did not differ significantly in weight, height, or size. Solid sugar content was highest in the fruits harvested at 70 days after fruit setting, but firmness, L* value, and respiration rate were highest in the fruits harvested at 50 days after fruit setting. When the harvested melons were stored at 7℃, 'K3' melons responded differently according to the harvest days after fruit setting. The major changes during storage of 'K3' melons can be summarized as follows: Firmness, respiration, moisture content, and general appearance index during storage were highest in the melons harvested at 50 days after fruit setting, but soluble solid content, fresh weight loss, and sensory evaluation were high in the melons harvested at 60 and 70 days after one. During storage at 7℃, there were no significant differences in the appearance of 'K3' melons harvested at different periods after fruit setting, but difference in soluble solid content and taste were noted. It is recommended that the fruit of 'K3' melon plants be harvested about 60 days after fruiting to provide consumers with the highest quality for taste and for storage.

Influence of Rainfall During the Ripening Stage on Pre-Harvest Sprouting, Seed Quality, and Longevity of Rice (Oryza sativa L.)

  • Baek, Jung-Sun;Chung, Nam-Jin
    • 한국작물학회지
    • /
    • 제59권4호
    • /
    • pp.406-412
    • /
    • 2014
  • The influence of rainfall during the ripening stage on pre-harvest sprouting, seed viability, and seed quality was investigated in two Korean rice cultivars, Shindongjin and Hopum. When the rainfall was artificially treated in a greenhouse, HP started to pre-harvest sprouting at three days of rainfall treatment (DRT), but Shindongjin did not show pre-harvest sprouting at 40 DAH treatment and just 0.3~0.8% at 50 DAH, which was much lower than 15.3~25.8% of Hopum in the same treatment. After harvest, the seed germination of Hopum decreased about 10~25% compared to non-treated seeds, but that of Shindongjin decreased much little rate than that of Hopum. The seed longevity tested by accelerated aging decreased with prolonged rainfall period in both cultivars, but the varietal difference was clear; Shindongjin could withstand longer accelerated aging than Hopum. Shindongjin maintained its germination (>50%) ability after 15 days of accelerated aging regardless of the rainfall treatment period and time, but Hopum dropped below 50% germination ability after only 5 days of accelerated aging. In conclusion, rainfall during the ripening stage induced not only pre-harvest sprouting, but also reduced seed quality and longevity during storage, which varied between two cultivars.

Quantity and Processing Characteristics of Potatoes for Chipping during Autumn Cultivation by Harvest Time

  • Gyu Bin Lee;Jang Gyu Choi;Do Hee Kwon;Jae youn Yi;Young Eun Park;Yong Ik Jin;Gun Ho Jung
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2023년도 임시총회 및 춘계학술대회
    • /
    • pp.25-25
    • /
    • 2023
  • As the demand for processing potatoes increases, imports of raw potatoes and potato products are increasing, so it is necessary to expand potato production as raw materials for processing in Korea. Potato varieties for processing that can be grown in fall have been developed, but research on cultivation technology and processing quality management technology to improve chip processing quality is very insufficient. Therefore, this study was conducted to investigate the optimal harvest time by investigating the quantity and chipping characteristics of potato chips during autumn cultivation. As the test varieties, the chip processing varieties "Saebong", "Eunsun", and "Geumnaru" were used, and the potato cultivation site was the Seocheon-gun Test field (214 Gaeya-ri) of the Chungcheongnam-do. The test treatment was at harvest time after spring cultivation, and the potatoes were harvested at 70, 80, 90, and 100 days after sowing based on the sowing time. The investigation items were potato productivity (total yield, yield of standard processing, and number of tubers) and chip-processing characteristics (chip color, dry matter content, glucose content, etc.). As a result of examining the yield characteristics according to the harvest time, statistical significance was not found according to the treatment. The total yield (ton/ha) was 27.5 to 30.5, and there was no significant difference depending on the time of 70 to 100 days after harvest. The standard quantity for processing (yield of 81-250g potatoes per unit) also showed a similar trend. In chipping characteristics according to harvest time, statistical significance was high in specific gravity and glucose content. The specific gravity was highest at 1.077 at 70 days after harvest, and the glucose (mg/dL) content was the lowest at 37.5 at 80 days after harvest. Statistical significance was not recognized, but chip color (L value) was the highest at 64.4 at 70 days after harvest. Therefore, it is judged that the optimal harvesting time for chip processing is 70 to 80 days after sowing.

  • PDF

수도의 수확적기결정을 위한 기초적 연구 (A Study on the Changes in Grain Weight, Moisture Content, Shattering Force, Milling Ratio and Apparant Physical Quality of Rice with Harvesting Time)

  • 권용웅;신진철
    • 한국작물학회지
    • /
    • 제25권4호
    • /
    • pp.1-9
    • /
    • 1980
  • To determine the optimum harvest time of recent rice varieties from Indica/Japonica remote crosses, leading varieties Suweon 264 and Milyang 23 were tested for the changes in dry matter weight and moisture content of grain, shattering, shelling ratio, milling ratio, and apparant physical quality during grain development at 5 day-intervals from 20 days to 55 days after heading. The results are summarized as follows: 1. Grain weight (dry matter) reached its maximum (physiological maturity) at 30 days after flowering (DAF) in Suweon 264, and at 35 days in Milyang 23, and thereafter it did not change significantly until 55 DAF. 2. Time course of decrease in grain moisture content (Y, %) during maturation (X, DAF) consisted of two linear phases, i.e. a fast and a slow period: Y=68.245-1.33X until 34DAF, and Y=23.025-0.470X until 55DAF after 34DAF in Suweon 264; Y=73.62-1.634X until 24.5DAF, and Y=33.59-0.570X until 55DAF after 24.5DAF in Milyang 23. Two varieties showed the same grain moisture content of 28% (wet basis) at physiological maturity in spite of the distinct differences in the heading date, time of physiological maturity and thereby ripening climate. 3. Force to shatter a grain ranged about 90 to 100g in Milyang 23, and about 200 to 250g in Suweon 264 and in a Japonica variety, Jinheung. The force, however, did not change significantly with harvest time from 35DAF to 50DAF. 4. The changes in the ratios of shelling, milling, broken rice and tinted rice with harvest time were insignificant during a period from 35DAF to 55DAF. However, ratios of green rice and white belly rice decreased significantly with delay in harvest time during 10 days after physiological maturity. 5. The best time of harvest for maximum yield and good quality is thought to be 10 days after physiological maturity, and grain moisture content at this time was about 20% on wet basis.

  • PDF

파프리카 재배기간 중 담배나방 방제에 사용되는 살충제의 잔류특성 (Residual Characteristics of Insecticides Used for Oriental Tobacco Budworm Control of Paprika)

  • 이동열;김영진;김상곤;강규영
    • 한국환경농학회지
    • /
    • 제32권1호
    • /
    • pp.84-93
    • /
    • 2013
  • 본 연구는 파프리카 재배 중 담배나방 방제에 사용되는 살충제의 잔류특성을 알아보고 추천 생산단계 잔류허용기준(Pre-Harvest Residue Limit, PHRL) 설정을 통하여 안전한 파프리카 생산에 기여하고자 수행되었다. 파프리카에 각각의 농약을 기준량 처리와 배량 처리로 살포한 후 1, 3, 5, 7, 10, 12, 15, 18 그리고 21일에 일정한 간격에 맞추어 파프리카 시료를 수확하여 잔류농약을 분석하고 생물학적 반감기를 산출한 다음 추천 생산단계 잔류허용기준(Pre-Harvest Residue Limit, PHRL)을 설정하였다. 시료들은 QuEChERS법으로 추출한 후 $NH_2$ SPE cartridge와 PSA을 이용하여 정제하고 HPLC/DAD와 GLC/ECD를 이용하여 기기분석을 하였다. 5개 살충제의 검출한계는 모두 0.01 mg/kg이며 회수율은 검출한계의 10배, 50배 농도인 0.1, 0.5 mg/kg가 되도록 3반복 처리하여 $81.3{\pm}1.62%$에서 $98.3{\pm}1.58%$였다. 시험 살충제의 생물학적 반감기는 bifenthrin에서 11.8일, chlorantraniliprole은 8.5일, chlorfenapyr는 16.8일, lamda-cyhalothrin은 7.1일, methoxyfenozide에서 31.3일로 나타났다. 생산단계 농약 잔류허용기준은 수확 10일 전 bifenthrin, chlorantraniliprole, chlorfenapyr, lamda-cyhalothrin 그리고 에서 methoxyfenozide에서 각각 1.05 mg/kg, 1.41 mg/kg, 0.93 mg/kg, 2.06 mg/kg 그리고 1.08 mg/kg으로 제안하였다.

결구상추의 수경재배시 수확전 질소중단이 품질에 미치는 영향 (Effect of Nitrogen Starvation on Quality of Crisp Lettuce in Deep Flow Culture)

  • 김혜진;김영식
    • 생물환경조절학회지
    • /
    • 제7권3호
    • /
    • pp.253-258
    • /
    • 1998
  • 본 실험은 수확 18, 14, 11, 7, 0일전의 배양액내 질소중단이 결구상추의 생육과 품질에 미치는 영향을 조사한 것으로, 질소 중단으로 엽중 nitrate 함량은 상당량 감소하였다. 그러나 그와 동시에 생체중도 감소하였다. 수확 18일전 처리에서 결구된 겉잎의 nitrate 함량이 가장 낮았으며, 속잎은 수확 14일전 및 11일전 처리에서 가장 낮았다. 질소중단 기간이 길수록 양이온의 흡수가 저조하였다. 실험기간동안 pH는 0일전 및 7일전 처리구를 제외하고는 감소하는 경향을 보였으며, EC는 처리에 관계없이 계속적으로 증가하였다.

  • PDF

Effect of the Cold Treatment Period on a Plant's Dormancy Breaking in the Winter Production of Gomchwi's New Varieties (Ligularia fischeri (Ledeb.) Turcz)

  • Suh, Jong Taek;Kim, Ki Deog;Kim, Su Jeong;Sohn, Hwang Bae;Hong, Su Young;Kim, Yul Ho
    • 한국자원식물학회지
    • /
    • 제32권6호
    • /
    • pp.683-688
    • /
    • 2019
  • This study was conducted to determine the number of days required to break a plant's dormancy and promote subsequent crop growth in new varieties of Gomchwi through the 4℃ treatment. Three new varieties of Gomchwi namely, 'Sammany', 'Gommany', and 'Damogy' were observed in this study. The rate of leaf emergence of 'Sammany' after 15-day of 4℃ treatment was 100%, while 'Gommany', and 'Damogy' took 20-days and 10-days, respectively to reach to 97.9% rate of leaf emergence. After 10-days of 4℃ treatment, 'Damogy' grew faster than the other varieties. and Harvest time for 'Damogy' was on January 18th, after 5-days of 4℃ treatment and yield was observed to be the highest at 15-days of 4℃ treatment. 'Sammany' was next with a minimum of 10-days of 4℃ treatment, although 15-days is more preferred for better harvest. 'Gommany' on the other hand, did not grow enough for harvest by January 18th, and its harvest time was delayed to January 31st. It needed a minimum of 15-days and preferentially 20-days of 4℃ treatment to grow normally and be ready for harvest. The plant height, leaf length and leaf petiole length appeared to grow better by extending duration of the 4℃ treatment. The number of leaves of 'Sammany' and 'Gommany' varieties was three leaves for the 5-days treatment which may be due to the incomplete breaking of dormancy. Regarding the yield per plant, 'Sammany' yielded 112.3 grams (g) in 15-days treatment, and 'Gommany' yielded 106.5 g in 25-days treatment. In the case of 'Damogy', it yielded 123.5 g and 183 g in the 10-days and 25-days treatment respectively. It is concluded that 'Damogy', 'Sammany' and 'Gommany requires 10, 15, and 20 days of 4℃ treatment to break the plant's dormancy and promote better plant growth.

생장조정제 처리가 상동나무 열매의 비대와 수확시기에 미치는 영향 (Effect of Plant Growth Regulators on Fruit Enlargement and Optimal Harvest Time in Sageretia thea (Osback) M. C. Johnst)

  • 송상철;송창길;김주성
    • 한국약용작물학회지
    • /
    • 제23권4호
    • /
    • pp.311-318
    • /
    • 2015
  • This study had been conducted to investigate the effect of some plant growth regulators inducing fruit enlargement and optimal harvest time in Sageretia thea. Two hundred fifty $mg/{\ell}$ mepiquat chloride treatment, $1mg/{\ell}$ thidiazuron treatment on full bloom, and $200mg/{\ell}$ gibberellic acid treatment on 7 days before full bloom resulted in the increase of 21.7% in weight, and $200mg/{\ell}$ gibberellic acid treatment 7 days before full bloom, 10$mg/{\ell}$ forchlorfenuron treatment 14 days after full bloom, and $1mg/{\ell}$ thidiazuron treatment on full bloom also brought about positive effects on the enlargement of the fruit, increasing 6.3%, 6.3% and 8.1% in its transverse diameter, respectively. Furthermore, the effects of the plant growth regulator treatments on the harvest time of Sageretia thea were determined as follows: the increase in the optimal harvest time of 57.2 - 75.4%, shorter maturation period, by the treatments with $500mg/{\ell}$ mepiquat chloride 7 days after full bloom, $100mg/{\ell}$ gibberellic acid treatment on full bloom, $2.5mg/{\ell}$ forchlorofenuron 7 days after full bloom and $2mg/{\ell}$ thidiazuron treatment 7 days before full bloom; and the greater effects of plant growth regulator treatments on the fruit maturation in the following order, gibberellic acid > thidiazuron > forchlorofenuron > mepiquat chloride. The results of this study are expected to be used as a reference data to develop Sageretia thea as a new local specific crop for Jeju island.

쑥갓 및 참나물 중 Lufenuron의 생산단계 잔류허용기준 설정을 위한 잔류 특성 연구 (Residual Characteristics of Lufenuron in Crown Daisy and Chamnamul for Establishing Pre-Harvest Residue Limit)

  • 오아연;반선우;장희라
    • 한국환경농학회지
    • /
    • 제42권1호
    • /
    • pp.21-27
    • /
    • 2023
  • Pre-harvest residue limits (PHRLs) have been proposed as criteria for a proactive role to exceed the maximum residue limit (MRL) of pesticides in agricultural products at harvest. However, PHRL numbers are significantly less than those of established MRLs. This study was performed to determine the dissipation constants and residual concentrations of lufenuron after application on crown daisy and chamnamul under green house conditions. Two residue field trials for each crown daisy and chamnamul were selected to consider a different geographical site at least 20 km far from one another. The pesticide was treated according to critical GAP. After samples were sprayed with lufenuron, they were collected at 0, 1, 3, 5, 7, 10, and 14 days and analyzed using HPLC-DAD. The mean recoveries of crown daisy and chamnamul were within the range of 70-120% with below 20% coefficient variation, which is within the acceptable limits specified by the manual of pre-harvest residue study for pesticides (MFDS, 2014). The biological half-lives in field I and field II were 7.0 and 4.6 days for crown daisy and 2.7 and 2.8 days for chamnamul, respectively. The lower bounds of 95% confidence intervals of dissipation rate constants of lufenuron in crown daisy were determined to be 0.0692 and 0.1298 for field I and field II, respectively, and in chamnamul were 0.2067 for both field I and field II. After applying lufenuron 5% EC, the lufenuron residues on crown daisy and chamnamul at the pre-harvest intervals (14 days for crown daisy and 7 days for chamnamul) were below the safe levels. The dissipation rates of lufenuron in crown daisy and chamnamul were evaluated for similarities with leafy vegetables based on a 95% confidence interval.