• 제목/요약/키워드: Date Filtering

검색결과 30건 처리시간 0.021초

Data Sparsity and Performance in Collaborative Filtering-based Recommendation

  • Kim Jong-Woo;Lee Hong-Joo
    • Management Science and Financial Engineering
    • /
    • 제11권3호
    • /
    • pp.19-45
    • /
    • 2005
  • Collaborative filtering is one of the most common methods that e-commerce sites and Internet information services use to personalize recommendations. Collaborative filtering has the advantage of being able to use even sparse evaluation data to predict preference scores for new products. To date, however, no in-depth investigation has been conducted on how the data sparsity effect in customers' evaluation data affects collaborative filtering-based recommendation performance. In this study, we analyzed the sparsity effect and used a hybrid method based on customers' evaluations and purchases collected from an online bookstore. Results indicated that recommendation performance decreased monotonically as sparsity increased, and that performance was more sensitive to sparsity in evaluation data rather than in purchase data. Results also indicated that the hybrid use of two different types of data (customers' evaluations and purchases) helped to improve the recommendation performance when evaluation data were highly sparse.

Improving Performance of Jaccard Coefficient for Collaborative Filtering

  • Lee, Soojung
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권11호
    • /
    • pp.121-126
    • /
    • 2016
  • In recommender systems based on collaborative filtering, measuring similarity is very critical for determining the range of recommenders. Data sparsity problem is fundamental in collaborative filtering systems, which is partly solved by Jaccard coefficient combined with traditional similarity measures. This study proposes a new coefficient for improving performance of Jaccard coefficient by compensating for its drawbacks. We conducted experiments using datasets of various characteristics for performance analysis. As a result of comparison between the proposed and the similarity metric of Pearson correlation widely used up to date, it is found that the two metrics yielded competitive performance on a dense dataset while the proposed showed much better performance on a sparser dataset. Also, the result of comparing the proposed with Jaccard coefficient showed that the proposed yielded far better performance as the dataset is denser. Overall, the proposed coefficient demonstrated the best prediction and recommendation performance among the experimented metrics.

하이브리드 위너 필터링 간섭제거 기법을 이용한 다중 데이터 율 DS/CDMA 시스템의 성능 분석 (Performance of GHICW(Group-wise Hybrid Interference Cancellation Scheme based on Wiener filtering) in Multi Rate DS-CDMA System)

  • 정재필;최원태;박상규
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(1)
    • /
    • pp.145-148
    • /
    • 2000
  • This paper presents the performance of a GHICW(Group-wise Hybrid Interference Cancellation scheme based on Wiener filtering) receiver for the multi-rate DS-CDMA system. Our scheme has a small processing delay and a simple hardware complexity compared to ordinary interference cancellation schemes by grouping users with the same date rate. The performance improvement of the low rate user is obtained by using a Wiener filter which precisely estimates the high rate users' bit.

  • PDF

Robust $H_{\infty}$ FIR Sampled-Date Filtering for Uncertain Time-Varying Systems with Unknown Nonlinearity

  • Ryu, Hee-Seob;Byung-Moon;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권2호
    • /
    • pp.83-88
    • /
    • 2001
  • The robust linear H(sub)$\infty$ FIR filter, which guarantees a prescribed H(sub)$\infty$ performance, is designed for continuous time-varying systems with unknown cone-bounded nonlinearity. The infinite horizon filtering for time-varying systems is systems is investigated in therms of two Riccati equations by the finite moving horizon.

  • PDF

가상 커뮤니티 공간에서 블로거를 위한 추천시스템

  • 김재경;오혁;안도현
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 공동추계학술대회
    • /
    • pp.415-424
    • /
    • 2005
  • The rapid growth of blog has caused information overload where bloggers in the virtual community space are no longer able to effectively choose the blogs they are exposed to. Recommender systems have been widely advocated as a way of coping with the problem of information overload in e-business environment. Collaborative Filtering (CF) is the most successful recommendation method to date and used in many of the recommender systems. Therefore, we propose a CF-based recommender system for bloggers in the virtual community space. Our proposed methodology consists of three main phases: In the first phase, we apply the "Interest Value" to a recommender system. The Interest Value is a quantity value about user preference in virtual community, and can measure the opinion of users accurately. Next phase, we generate the neighborhood group based on the Interest Value. In the final phase, we use the Community Likeness Score (CLS) to generate the top-n recommendation list. The methodology is explained step by step with an illustrative example and is verified with real data of a blog service provider.

  • PDF

LANDAST(MSS, TM) Data를 이용(利用)한 서울시(市)의 토지이용(土地利用) 경년변화(經年變化)의 추출(抽出)에 관한 연구(硏究) (1972~1985년) (A Study on Extracting the Landuse Change Information of Seoul Using LANDSAT(MSS, TM) Data (1972~1985))

  • 안철호;안기원;김용일
    • 대한토목학회논문집
    • /
    • 제9권4호
    • /
    • pp.113-124
    • /
    • 1989
  • 인공위성 데이타 정보의 용용분야는 여러가지가 있으나, 본 연구에서는 LANDSAT MSS데이타와 TM데이타를 처리 분석하여 서울시 토지이용정보를 경년변화에 따라 추출하고자 하였다. 사용 데이터는 MSS(72, 79, 81, 83년), TM(85년)이며 입수된 데이타를 전처리를 통해 기하보정, 디지타이징(행정구역에 따라) 등을 하고, 유효 band 선정 및 filtering을 통하여 정확도를 높인 후 MLC(Maximum Likelihood Classifier)로 토지이용분류를 실시하였다. 토지이용분류시 training field 선정 자료로는 현지조사자료, 지형도, 항공사진을 참조하였고, 분류결과의 정확도는 각각 그 당시의 통계자료를 토대로 하여 비교해 보았다. 분석결과, 서울시의 도시지역은 72년 (25.3 %), 81년 (43.0 %), 85년 (51.9 %)로 증가되었고, 이에 대해 삼림은 72년(39.0 %)에서 85년(28.4 %)로 점차 감소되고 있었다. 이상과 같이 토지이용 경년변화를 추출함으로써 도시의 토지 이용상황 monitoring에는 반복 주기를 가지는 인공위성 데이터의 활용이 경제적이며 효과적임을 알 수 있었다.

  • PDF

텍스트 마이닝 및 자동 추론 기반 생물학 지식 발견 시스템을 위한 확률 기반 필터링 (Probabilistic filtering for a biological knowledge discovery system with text mining and automatic inference)

  • 이희진;박종철
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.139-147
    • /
    • 2012
  • 본 논문에서는 텍스트 마이닝을 통해 생물학 문헌에서 분자 수준의 사건(event) 정보를 자동으로 추출하고, 이들 사건 정보를 기반으로 새로운 생물학 지식을 자동 추론하는 텍스트 마이닝 - 추론 통합 구조의 시스템을 다룬다. 이러한 통합 구조의 지식 발견 시스템은 미리 추출되어 데이터베이스에 등록된 정보만을 입력으로 사용하는 시스템들에 비하여 최신 정보를 보다 빨리 사용할 수 있고, 미리 정의된 형식 이외의 다양한 정보를 사용할 수 있다는 장점이 있다. 반면, 텍스트 마이닝 정보 추출 결과를 그대로 사용하기 때문에 텍스트 마이닝 모듈(module)의 성능에 따라 전체 시스템의 효용성이 크게 저하될 수도 있다는 문제가 있다. 본 논문에서는 확률 기반 필터링(filtering) 방법을 제안하여, 텍스트 마이닝 결과 중 양성 오류(false positive)를 효과적으로 제거함으로써 전체 지식 발견 시스템의 정확도 및 효용성을 높이고자 한다. 본 논문에서 제안한 확률 기반 필터링 방법은 기준(baseline) 방법으로 사용된 횟수 기반 필터링 방법보다 높은 성능을 보였다.

OLAP4R: A Top-K Recommendation System for OLAP Sessions

  • Yuan, Youwei;Chen, Weixin;Han, Guangjie;Jia, Gangyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.2963-2978
    • /
    • 2017
  • The Top-K query is currently played a key role in a wide range of road network, decision making and quantitative financial research. In this paper, a Top-K recommendation algorithm is proposed to solve the cold-start problem and a tag generating method is put forward to enhance the semantic understanding of the OLAP session. In addition, a recommendation system for OLAP sessions called "OLAP4R" is designed using collaborative filtering technique aiming at guiding the user to find the ultimate goals by interactive queries. OLAP4R utilizes a mixed system architecture consisting of multiple functional modules, which have a high extension capability to support additional functions. This system structure allows the user to configure multi-dimensional hierarchies and desirable measures to analyze the specific requirement and gives recommendations with forthright responses. Experimental results show that our method has raised 20% recall of the recommendations comparing the traditional collaborative filtering and a visualization tag of the recommended sessions will be provided with modified changes for the user to understand.

블로그 인텔리전스 (Blog Intelligence)

  • 김재경;김혜경;오혁
    • 한국IT서비스학회지
    • /
    • 제7권3호
    • /
    • pp.71-85
    • /
    • 2008
  • The rapid growth of blog has caused information overload where bloggers in the virtual community space are no longer able to effectively choose the blogs they are exposed to. Recommender systems have been widely advocated as a way of coping with the problem of information overload in e-business environment. Collaborative Filtering (CF) is the most successful recommendation method to date and used in many of the recommender systems. In this research, we propose a CF-based recommender system for bloggers to find their similar bloggers or preferable virtual community without burdensome search effort. For such a purpose, we apply the "Interest Value" to CF recommender systems. The Interest Value is the quantity value about users' transaction data in virtual community, and can measure the opinion of users accurately. Based on the Interest Value, the neighborhood group is generated, and virtual community list is recommended using the Community Likeness Score (ClS). Our experimental results upon real data of Korean Blog site show that the methodology is capable of dealing with the information overload issue in virtual community space. And Interest Value is proved to have the potential to meet the challenge of recommendation methodologies in virtual community space.