• Title/Summary/Keyword: Dataset Training

Search Result 668, Processing Time 0.022 seconds

A study on improving self-inference performance through iterative retraining of false positives of deep-learning object detection in tunnels (터널 내 딥러닝 객체인식 오탐지 데이터의 반복 재학습을 통한 자가 추론 성능 향상 방법에 관한 연구)

  • Kyu Beom Lee;Hyu-Soung Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.129-152
    • /
    • 2024
  • In the application of deep learning object detection via CCTV in tunnels, a large number of false positive detections occur due to the poor environmental conditions of tunnels, such as low illumination and severe perspective effect. This problem directly impacts the reliability of the tunnel CCTV-based accident detection system reliant on object detection performance. Hence, it is necessary to reduce the number of false positive detections while also enhancing the number of true positive detections. Based on a deep learning object detection model, this paper proposes a false positive data training method that not only reduces false positives but also improves true positive detection performance through retraining of false positive data. This paper's false positive data training method is based on the following steps: initial training of a training dataset - inference of a validation dataset - correction of false positive data and dataset composition - addition to the training dataset and retraining. In this paper, experiments were conducted to verify the performance of this method. First, the optimal hyperparameters of the deep learning object detection model to be applied in this experiment were determined through previous experiments. Then, in this experiment, training image format was determined, and experiments were conducted sequentially to check the long-term performance improvement through retraining of repeated false detection datasets. As a result, in the first experiment, it was found that the inclusion of the background in the inferred image was more advantageous for object detection performance than the removal of the background excluding the object. In the second experiment, it was found that retraining by accumulating false positives from each level of retraining was more advantageous than retraining independently for each level of retraining in terms of continuous improvement of object detection performance. After retraining the false positive data with the method determined in the two experiments, the car object class showed excellent inference performance with an AP value of 0.95 or higher after the first retraining, and by the fifth retraining, the inference performance was improved by about 1.06 times compared to the initial inference. And the person object class continued to improve its inference performance as retraining progressed, and by the 18th retraining, it showed that it could self-improve its inference performance by more than 2.3 times compared to the initial inference.

A Crowdsourcing-Based Paraphrased Opinion Spam Dataset and Its Implication on Detection Performance (크라우드소싱 기반 문장재구성 방법을 통한 의견 스팸 데이터셋 구축 및 평가)

  • Lee, Seongwoon;Kim, Seongsoon;Park, Donghyeon;Kang, Jaewoo
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.7
    • /
    • pp.338-343
    • /
    • 2016
  • Today, opinion reviews on the Web are often used as a means of information exchange. As the importance of opinion reviews continues to grow, the number of issues for opinion spam also increases. Even though many research studies on detecting spam reviews have been conducted, some limitations of gold-standard datasets hinder research. Therefore, we introduce a new dataset called "Paraphrased Opinion Spam (POS)" that contains a new type of review spam that imitates truthful reviews. We have noticed that spammers refer to existing truthful reviews to fabricate spam reviews. To create such a seemingly truthful review spam dataset, we asked task participants to paraphrase truthful reviews to create a new deceptive review. The experiment results show that classifying our POS dataset is more difficult than classifying the existing spam datasets since the reviews in our dataset more linguistically look like truthful reviews. Also, training volume has been found to be an important factor for classification model performance.

Building a Korean Text Summarization Dataset Using News Articles of Social Media (신문기사와 소셜 미디어를 활용한 한국어 문서요약 데이터 구축)

  • Lee, Gyoung Ho;Park, Yo-Han;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.8
    • /
    • pp.251-258
    • /
    • 2020
  • A training dataset for text summarization consists of pairs of a document and its summary. As conventional approaches to building text summarization dataset are human labor intensive, it is not easy to construct large datasets for text summarization. A collection of news articles is one of the most popular resources for text summarization because it is easily accessible, large-scale and high-quality text. From social media news services, we can collect not only headlines and subheads of news articles but also summary descriptions that human editors write about the news articles. Approximately 425,000 pairs of news articles and their summaries are collected from social media. We implemented an automatic extractive summarizer and trained it on the dataset. The performance of the summarizer is compared with unsupervised models. The summarizer achieved better results than unsupervised models in terms of ROUGE score.

A Development of Façade Dataset Construction Technology Using Deep Learning-based Automatic Image Labeling (딥러닝 기반 이미지 자동 레이블링을 활용한 건축물 파사드 데이터세트 구축 기술 개발)

  • Gu, Hyeong-Mo;Seo, Ji-Hyo;Choo, Seung-Yeon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.12
    • /
    • pp.43-53
    • /
    • 2019
  • The construction industry has made great strides in the past decades by utilizing computer programs including CAD. However, compared to other manufacturing sectors, labor productivity is low due to the high proportion of workers' knowledge-based task in addition to simple repetitive task. Therefore, the knowledge-based task efficiency of workers should be improved by recognizing the visual information of computers. A computer needs a lot of training data, such as the ImageNet project, to recognize visual information. This study, aim at proposing building facade datasets that is efficiently constructed by quickly collecting building facade data through portal site road view and automatically labeling using deep learning as part of construction of image dataset for visual recognition construction by the computer. As a method proposed in this study, we constructed a dataset for a part of Dongseong-ro, Daegu Metropolitan City and analyzed the utility and reliability of the dataset. Through this, it was confirmed that the computer could extract the significant facade information of the portal site road view by recognizing the visual information of the building facade image. Additionally, In contribution to verifying the feasibility of building construction image datasets. this study suggests the possibility of securing quantitative and qualitative facade design knowledge by extracting the facade design knowledge from any facade all over the world.

COVID-19: Improving the accuracy using data augmentation and pre-trained DCNN Models

  • Saif Hassan;Abdul Ghafoor;Zahid Hussain Khand;Zafar Ali;Ghulam Mujtaba;Sajid Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.170-176
    • /
    • 2024
  • Since the World Health Organization (WHO) has declared COVID-19 as pandemic, many researchers have started working on developing vaccine and developing AI systems to detect COVID-19 patient using Chest X-ray images. The purpose of this work is to improve the performance of pre-trained Deep convolution neural nets (DCNNs) on Chest X-ray images dataset specially COVID-19 which is developed by collecting from different sources such as GitHub, Kaggle. To improve the performance of Deep CNNs, data augmentation is used in this study. The COVID-19 dataset collected from GitHub was containing 257 images while the other two classes normal and pneumonia were having more than 500 images each class. There were two issues whike training DCNN model on this dataset, one is unbalanced and second is the data is very less. In order to handle these both issues, we performed data augmentation such as rotation, flipping to increase and balance the dataset. After data augmentation each class contains 510 images. Results show that augmentation on Chest X-ray images helps in improving accuracy. The accuracy before and after augmentation produced by our proposed architecture is 96.8% and 98.4% respectively.

Sign Language Dataset Built from S. Korean Government Briefing on COVID-19 (대한민국 정부의 코로나 19 브리핑을 기반으로 구축된 수어 데이터셋 연구)

  • Sim, Hohyun;Sung, Horyeol;Lee, Seungjae;Cho, Hyeonjoong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.325-330
    • /
    • 2022
  • This paper conducts the collection and experiment of datasets for deep learning research on sign language such as sign language recognition, sign language translation, and sign language segmentation for Korean sign language. There exist difficulties for deep learning research of sign language. First, it is difficult to recognize sign languages since they contain multiple modalities including hand movements, hand directions, and facial expressions. Second, it is the absence of training data to conduct deep learning research. Currently, KETI dataset is the only known dataset for Korean sign language for deep learning. Sign language datasets for deep learning research are classified into two categories: Isolated sign language and Continuous sign language. Although several foreign sign language datasets have been collected over time. they are also insufficient for deep learning research of sign language. Therefore, we attempted to collect a large-scale Korean sign language dataset and evaluate it using a baseline model named TSPNet which has the performance of SOTA in the field of sign language translation. The collected dataset consists of a total of 11,402 image and text. Our experimental result with the baseline model using the dataset shows BLEU-4 score 3.63, which would be used as a basic performance of a baseline model for Korean sign language dataset. We hope that our experience of collecting Korean sign language dataset helps facilitate further research directions on Korean sign language.

KOMUChat: Korean Online Community Dialogue Dataset for AI Learning (KOMUChat : 인공지능 학습을 위한 온라인 커뮤니티 대화 데이터셋 연구)

  • YongSang Yoo;MinHwa Jung;SeungMin Lee;Min Song
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.219-240
    • /
    • 2023
  • Conversational AI which allows users to interact with satisfaction is a long-standing research topic. To develop conversational AI, it is necessary to build training data that reflects real conversations between people, but current Korean datasets are not in question-answer format or use honorifics, making it difficult for users to feel closeness. In this paper, we propose a conversation dataset (KOMUChat) consisting of 30,767 question-answer sentence pairs collected from online communities. The question-answer pairs were collected from post titles and first comments of love and relationship counsel boards used by men and women. In addition, we removed abuse records through automatic and manual cleansing to build high quality dataset. To verify the validity of KOMUChat, we compared and analyzed the result of generative language model learning KOMUChat and benchmark dataset. The results showed that our dataset outperformed the benchmark dataset in terms of answer appropriateness, user satisfaction, and fulfillment of conversational AI goals. The dataset is the largest open-source single turn text data presented so far and it has the significance of building a more friendly Korean dataset by reflecting the text styles of the online community.

Text-Independent Speaker Verification Using Variational Gaussian Mixture Model

  • Moattar, Mohammad Hossein;Homayounpour, Mohammad Mehdi
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.914-923
    • /
    • 2011
  • This paper concerns robust and reliable speaker model training for text-independent speaker verification. The baseline speaker modeling approach is the Gaussian mixture model (GMM). In text-independent speaker verification, the amount of speech data may be different for speakers. However, we still wish the modeling approach to perform equally well for all speakers. Besides, the modeling technique must be least vulnerable against unseen data. A traditional approach for GMM training is expectation maximization (EM) method, which is known for its overfitting problem and its weakness in handling insufficient training data. To tackle these problems, variational approximation is proposed. Variational approaches are known to be robust against overtraining and data insufficiency. We evaluated the proposed approach on two different databases, namely KING and TFarsdat. The experiments show that the proposed approach improves the performance on TFarsdat and KING databases by 0.56% and 4.81%, respectively. Also, the experiments show that the variationally optimized GMM is more robust against noise and the verification error rate in noisy environments for TFarsdat dataset decreases by 1.52%.

Pipeline wall thinning rate prediction model based on machine learning

  • Moon, Seongin;Kim, Kyungmo;Lee, Gyeong-Geun;Yu, Yongkyun;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4060-4066
    • /
    • 2021
  • Flow-accelerated corrosion (FAC) of carbon steel piping is a significant problem in nuclear power plants. The basic process of FAC is currently understood relatively well; however, the accuracy of prediction models of the wall-thinning rate under an FAC environment is not reliable. Herein, we propose a methodology to construct pipe wall-thinning rate prediction models using artificial neural networks and a convolutional neural network, which is confined to a straight pipe without geometric changes. Furthermore, a methodology to generate training data is proposed to efficiently train the neural network for the development of a machine learning-based FAC prediction model. Consequently, it is concluded that machine learning can be used to construct pipe wall thinning rate prediction models and optimize the number of training datasets for training the machine learning algorithm. The proposed methodology can be applied to efficiently generate a large dataset from an FAC test to develop a wall thinning rate prediction model for a real situation.

Object Detection Accuracy Improvements of Mobility Equipments through Substitution Augmentation of Similar Objects (유사물체 치환증강을 통한 기동장비 물체 인식 성능 향상)

  • Heo, Jiseong;Park, Jihun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.300-310
    • /
    • 2022
  • A vast amount of labeled data is required for deep neural network training. A typical strategy to improve the performance of a neural network given a training data set is to use data augmentation technique. The goal of this work is to offer a novel image augmentation method for improving object detection accuracy. An object in an image is removed, and a similar object from the training data set is placed in its area. An in-painting algorithm fills the space that is eliminated but not filled by a similar object. Our technique shows at most 2.32 percent improvements on mAP in our testing on a military vehicle dataset using the YOLOv4 object detector.