• 제목/요약/키워드: Dataset Augmentation

검색결과 109건 처리시간 0.028초

Classification of Infant Crying Audio based on 3D Feature-Vector through Audio Data Augmentation

  • JeongHyeon Park;JunHyeok Go;SiUng Kim;Nammee Moon
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권9호
    • /
    • pp.47-54
    • /
    • 2023
  • 영아는 비언어적 의사 소통 방식인 울음이라는 수단을 사용한다[1]. 하지만 영아의 울음소리를 파악하는 것에는 어려움이 따른다. 영아의 울음소리를 해석하기 위해 많은 연구가 진행되었다[2,3]. 이에 본 논문에서는 다양한 음성 데이터 증강을 통한 3D 특징 벡터를 이용한 영아의 울음소리 분류를 제안한다. 연구에서는 총 5개의 클래스 복통, 하품, 불편함, 배고픔, 피곤함(belly pain, burping, discomfort, hungry, tired)로 분류된 데이터 세트를 사용한다. 데이터들은 5가지 기법(Pitch, Tempo, Shift, Mixup-noise, CutMix)을 사용하여 증강한다. 증강 기법 중에서 Tempo, Shift, CutMix 기법을 적용하였을 때 성능의 향상을 보여주었다. 최종적으로 우수한 데이터 증강 기법들을 동시 적용한 결과 단일 특징 벡터와 오리지널 데이터를 사용한 모델보다 17.75%의 성능 향상을 도출하였다.

디퓨전 오토인코더의 시선 조작 데이터 증강을 통한 시선 추적 (Gaze-Manipulated Data Augmentation for Gaze Estimation With Diffusion Autoencoders)

  • 문강륜;김영한;박용준;김용규
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권3호
    • /
    • pp.51-59
    • /
    • 2024
  • 시선 벡터 정답값을 갖는 대규모 데이터의 수집은 시선 추적 분야에서 많은 비용을 필요로 한다. 본 논문에서는 원본 사진의 시선을 수정하는 데이터 증강 기법을 사용하여 제한된 개수의 시선 정답값이 주어진 상황에서 시선 추적 모델의 정확도를 향상시키는 방법을 제안한다. 시선 구간 다중 클래스 분류를 보조 작업으로 학습하고, 디퓨전 오토인코더의 잠재 변수를 조정하여 원본 사진의 시선을 편집한 사진을 생성한다. 기존의 얼굴 속성 편집과 달리, 우리는 이진 속성이 아닌 시선 벡터의 피치와 요를 지정한 범주 내로 변경하며, 편집된 사진을 시선 추적 모델의 증강된 학습 데이터로 활용한다. 시선 정답값이 5만 개 이하일 때 준지도 학습에서의 시선 추적 모델의 정확도 향상은 제안한 데이터 증강 기법의 효과를 입증한다.

폐 결절 검출을 위한 합성곱 신경망의 성능 개선 (Performance Improvement of Convolutional Neural Network for Pulmonary Nodule Detection)

  • 김한웅;김병남;이지은;장원석;유선국
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권5호
    • /
    • pp.237-241
    • /
    • 2017
  • Early detection of the pulmonary nodule is important for diagnosis and treatment of lung cancer. Recently, CT has been used as a screening tool for lung nodule detection. And, it has been reported that computer aided detection(CAD) systems can improve the accuracy of the radiologist in detection nodules on CT scan. The previous study has been proposed a method using Convolutional Neural Network(CNN) in Lung CAD system. But the proposed model has a limitation in accuracy due to its sparse layer structure. Therefore, we propose a Deep Convolutional Neural Network to overcome this limitation. The model proposed in this work is consist of 14 layers including 8 convolutional layers and 4 fully connected layers. The CNN model is trained and tested with 61,404 regions-of-interest (ROIs) patches of lung image including 39,760 nodules and 21,644 non-nodules extracted from the Lung Image Database Consortium(LIDC) dataset. We could obtain the classification accuracy of 91.79% with the CNN model presented in this work. To prevent overfitting, we trained the model with Augmented Dataset and regularization term in the cost function. With L1, L2 regularization at Training process, we obtained 92.39%, 92.52% of accuracy respectively. And we obtained 93.52% with data augmentation. In conclusion, we could obtain the accuracy of 93.75% with L2 Regularization and Data Augmentation.

다양한 재료에서 발생되는 연기 및 불꽃에 대한 YOLO 기반 객체 탐지 모델 성능 개선에 관한 연구 (Research on Improving the Performance of YOLO-Based Object Detection Models for Smoke and Flames from Different Materials )

  • 권희준;이보희;정해영
    • 한국전기전자재료학회논문지
    • /
    • 제37권3호
    • /
    • pp.261-273
    • /
    • 2024
  • This paper is an experimental study on the improvement of smoke and flame detection from different materials with YOLO. For the study, images of fires occurring in various materials were collected through an open dataset, and experiments were conducted by changing the main factors affecting the performance of the fire object detection model, such as the bounding box, polygon, and data augmentation of the collected image open dataset during data preprocessing. To evaluate the model performance, we calculated the values of precision, recall, F1Score, mAP, and FPS for each condition, and compared the performance of each model based on these values. We also analyzed the changes in model performance due to the data preprocessing method to derive the conditions that have the greatest impact on improving the performance of the fire object detection model. The experimental results showed that for the fire object detection model using the YOLOv5s6.0 model, data augmentation that can change the color of the flame, such as saturation, brightness, and exposure, is most effective in improving the performance of the fire object detection model. The real-time fire object detection model developed in this study can be applied to equipment such as existing CCTV, and it is believed that it can contribute to minimizing fire damage by enabling early detection of fires occurring in various materials.

인물 개체 분할을 위한 맥락-의존적 비디오 데이터 보강 (Context-Dependent Video Data Augmentation for Human Instance Segmentation)

  • 전현진;이종훈;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권5호
    • /
    • pp.217-228
    • /
    • 2023
  • 비디오 개체 분할은 비디오를 구성하는 영상 프레임 각각에 대해 관심 개체 분할을 수행해야 할 뿐만 아니라, 해당 비디오를 구성하는 프레임 시퀀스 전체에 걸쳐 개체들에 대한 정확한 트래킹을 요구하기 때문에 난이도가 높은 기술이다. 특히 드라마 비디오에서 인물 개체 분할은 다양한 장소와 시간대에서 상호 작용하는 복수의 주요 등장인물들에 대한 정확한 트래킹을 요구하는 특징을 가지고 있다. 또한, 드라마 비디오 인물 개체분할은 주연 인물들과 조연 혹은 보조 출연 인물들 간의 등장 빈도에 상당한 차이가 있어 일종의 클래스 불균형 문제도 있다. 본 논문에서는 미생 드라마 비디오들을 토대로 구축한 인물 개체 분할 데이터 집합인 MHIS를 소개하고, 등장인물 클래스 간의 심각한 데이터 불균형 문제를 효과적으로 해결하기 위한 새로운 비디오 데이터 보강 기법인 CDVA를 제안한다. 기존의 비디오 데이터 보강 기법들과는 달리, 새로운 CDVA 보강 기법은 비디오들의 시-공간적 맥락을 충분히 고려해서 목표 인물이 삽입되어야 할 배경 클립 내의 위치를 결정함으로써, 보다 더 현실적인 보강 비디오들을 생성한다. 따라서 본 논문에서 제안하는 새로운 비디오 데이터 보강 기법인 CDVA는 비디오 개체 분할을 위한 심층 신경망 모델의 성능을 효과적으로 향상시킬 수 있다. 본 논문에서는 MHIS 데이터 집합을 이용한 다양한 정량 및 정성 실험들을 통해, 제안 비디오 데이터 보강 기법의 유용성과 효과를 입증한다.

MUSA-OKUMOTO와 ERLANG(2)의 중첩과정에 대한 베이지안 계산 연구 (Bayesian Computation for Superposition of MUSA-OKUMOTO and ERLANG(2) processes)

  • 최기헌;김희철
    • 응용통계연구
    • /
    • 제11권2호
    • /
    • pp.377-387
    • /
    • 1998
  • 컴퓨터의 발전에 따른 마코브체인 몬테카를로방법을 소프트웨어 신뢰확률모형에 이용하였다. 베이지안 추론에서 조건부분포를 가지고 사후분포를 결정하는데 있어서의 계산문제와 이론적인 정당성을 고려, 마코프연쇄와 메트로폴리스방법의 관계를 고찰하였으며, 특히 Mus-Okumoto와 Erlang(2)의 중첩모형에 대하여 깁스샘플링 알고리즘과 메트로폴리스 알고리즘을 활용하며 베이지안 계산과 예측 우도기준에 의 한 모형선택을 제안하고 Cox-Lewis에 의해 계시된 Thing method를 이용한 모의실험자료를 이용하여 수치적인 계산을 시행하고 그 결과가 제시되었다.

  • PDF

Image-to-Image Translation with GAN for Synthetic Data Augmentation in Plant Disease Datasets

  • Nazki, Haseeb;Lee, Jaehwan;Yoon, Sook;Park, Dong Sun
    • 스마트미디어저널
    • /
    • 제8권2호
    • /
    • pp.46-57
    • /
    • 2019
  • In recent research, deep learning-based methods have achieved state-of-the-art performance in various computer vision tasks. However, these methods are commonly supervised, and require huge amounts of annotated data to train. Acquisition of data demands an additional costly effort, particularly for the tasks where it becomes challenging to obtain large amounts of data considering the time constraints and the requirement of professional human diligence. In this paper, we present a data level synthetic sampling solution to learn from small and imbalanced data sets using Generative Adversarial Networks (GANs). The reason for using GANs are the challenges posed in various fields to manage with the small datasets and fluctuating amounts of samples per class. As a result, we present an approach that can improve learning with respect to data distributions, reducing the partiality introduced by class imbalance and hence shifting the classification decision boundary towards more accurate results. Our novel method is demonstrated on a small dataset of 2789 tomato plant disease images, highly corrupted with class imbalance in 9 disease categories. Moreover, we evaluate our results in terms of different metrics and compare the quality of these results for distinct classes.

아리랑 5호 위성 영상에서 수계의 의미론적 분할을 위한 딥러닝 모델의 비교 연구 (Comparative Study of Deep Learning Model for Semantic Segmentation of Water System in SAR Images of KOMPSAT-5)

  • 김민지;김승규;이도훈;감진규
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.206-214
    • /
    • 2022
  • The way to measure the extent of damage from floods and droughts is to identify changes in the extent of water systems. In order to effectively grasp this at a glance, satellite images are used. KOMPSAT-5 uses Synthetic Aperture Radar (SAR) to capture images regardless of weather conditions such as clouds and rain. In this paper, various deep learning models are applied to perform semantic segmentation of the water system in this SAR image and the performance is compared. The models used are U-net, V-Net, U2-Net, UNet 3+, PSPNet, Deeplab-V3, Deeplab-V3+ and PAN. In addition, performance comparison was performed when the data was augmented by applying elastic deformation to the existing SAR image dataset. As a result, without data augmentation, U-Net was the best with IoU of 97.25% and pixel accuracy of 98.53%. In case of data augmentation, Deeplab-V3 showed IoU of 95.15% and V-Net showed the best pixel accuracy of 96.86%.

자가학습과 지식증류 방법을 활용한 LiDAR 3차원 물체 탐지에서의 준지도 도메인 적응 (Semi-Supervised Domain Adaptation on LiDAR 3D Object Detection with Self-Training and Knowledge Distillation)

  • 우정완;김재열;임성훈
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.346-351
    • /
    • 2023
  • With the release of numerous open driving datasets, the demand for domain adaptation in perception tasks has increased, particularly when transferring knowledge from rich datasets to novel domains. However, it is difficult to solve the change 1) in the sensor domain caused by heterogeneous LiDAR sensors and 2) in the environmental domain caused by different environmental factors. We overcome domain differences in the semi-supervised setting with 3-stage model parameter training. First, we pre-train the model with the source dataset with object scaling based on statistics of the object size. Then we fine-tine the partially frozen model weights with copy-and-paste augmentation. The 3D points in the box labels are copied from one scene and pasted to the other scenes. Finally, we use the knowledge distillation method to update the student network with a moving average from the teacher network along with a self-training method with pseudo labels. Test-Time Augmentation with varying z values is employed to predict the final results. Our method achieved 3rd place in ECCV 2022 workshop on the 3D Perception for Autonomous Driving challenge.

불균형 블랙박스 동영상 데이터에서 충돌 상황의 다중 분류를 위한 손실 함수 비교 (Comparison of Loss Function for Multi-Class Classification of Collision Events in Imbalanced Black-Box Video Data)

  • 이의상;한석민
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.49-54
    • /
    • 2024
  • 데이터 불균형은 분류 문제에서 흔히 마주치는 문제로, 데이터셋 내의 클래스간 샘플 수의 현저한 차이에서 기인한다. 이러한 데이터 불균형은 일반적으로 분류 모델에서 과적합, 과소적합, 성능 지표의 오해 등의 문제를 야기한다. 이를 해결하기 위한 방법으로는 Resampling, Augmentation, 규제 기법, 손실 함수 조정 등이 있다. 본 논문에서는 손실 함수 조정에 대해 다루며 특히, 불균형 문제를 가진 Multi-Class 블랙박스 동영상 데이터에서 여러 구성의 손실 함수(Cross Entropy, Balanced Cross Entropy, 두 가지 Focal Loss 설정: 𝛼 = 1 및 𝛼 = Balanced, Asymmetric Loss)의 성능을 I3D, R3D_18 모델을 활용하여 비교하였다.