• Title/Summary/Keyword: Dataset Augmentation

Search Result 104, Processing Time 0.027 seconds

Flaw Detection in LCD Manufacturing Using GAN-based Data Augmentation

  • Jingyi Li;Yan Li;Zuyu Zhang;Byeongseok Shin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.124-125
    • /
    • 2023
  • Defect detection during liquid crystal display (LCD) manufacturing has always been a critical challenge. This study aims to address this issue by proposing a data augmentation method based on generative adversarial networks (GAN) to improve defect identification accuracy in LCD production. By leveraging synthetically generated image data from GAN, we effectively augment the original dataset to make it more representative and diverse. This data augmentation strategy enhances the model's generalization capability and robustness on real-world data. Compared to traditional data augmentation techniques, the synthetic data from GAN are more realistic, diverse and broadly distributed. Experimental results demonstrate that training models with GAN-generated data combined with the original dataset significantly improves the detection accuracy of critical defects in LCD manufacturing, compared to using the original dataset alone. This study provides an effective data augmentation approach for intelligent quality control in LCD production.

GAN-based Data Augmentation methods for Topology Optimization (위상 최적화를 위한 생산적 적대 신경망 기반 데이터 증강 기법)

  • Lee, Seunghye;Lee, Yujin;Lee, Kihak;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, a GAN-based data augmentation method is proposed for topology optimization. In machine learning techniques, a total amount of dataset determines the accuracy and robustness of the trained neural network architectures, especially, supervised learning networks. Because the insufficient data tends to lead to overfitting or underfitting of the architectures, a data augmentation method is need to increase the amount of data for reducing overfitting when training a machine learning model. In this study, the Ganerative Adversarial Network (GAN) is used to augment the topology optimization dataset. The produced dataset has been compared with the original dataset.

COVID-19: Improving the accuracy using data augmentation and pre-trained DCNN Models

  • Saif Hassan;Abdul Ghafoor;Zahid Hussain Khand;Zafar Ali;Ghulam Mujtaba;Sajid Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.170-176
    • /
    • 2024
  • Since the World Health Organization (WHO) has declared COVID-19 as pandemic, many researchers have started working on developing vaccine and developing AI systems to detect COVID-19 patient using Chest X-ray images. The purpose of this work is to improve the performance of pre-trained Deep convolution neural nets (DCNNs) on Chest X-ray images dataset specially COVID-19 which is developed by collecting from different sources such as GitHub, Kaggle. To improve the performance of Deep CNNs, data augmentation is used in this study. The COVID-19 dataset collected from GitHub was containing 257 images while the other two classes normal and pneumonia were having more than 500 images each class. There were two issues whike training DCNN model on this dataset, one is unbalanced and second is the data is very less. In order to handle these both issues, we performed data augmentation such as rotation, flipping to increase and balance the dataset. After data augmentation each class contains 510 images. Results show that augmentation on Chest X-ray images helps in improving accuracy. The accuracy before and after augmentation produced by our proposed architecture is 96.8% and 98.4% respectively.

A Study on Visual Emotion Classification using Balanced Data Augmentation (균형 잡힌 데이터 증강 기반 영상 감정 분류에 관한 연구)

  • Jeong, Chi Yoon;Kim, Mooseop
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.880-889
    • /
    • 2021
  • In everyday life, recognizing people's emotions from their frames is essential and is a popular research domain in the area of computer vision. Visual emotion has a severe class imbalance in which most of the data are distributed in specific categories. The existing methods do not consider class imbalance and used accuracy as the performance metric, which is not suitable for evaluating the performance of the imbalanced dataset. Therefore, we proposed a method for recognizing visual emotion using balanced data augmentation to address the class imbalance. The proposed method generates a balanced dataset by adopting the random over-sampling and image transformation methods. Also, the proposed method uses the Focal loss as a loss function, which can mitigate the class imbalance by down weighting the well-classified samples. EfficientNet, which is the state-of-the-art method for image classification is used to recognize visual emotion. We compare the performance of the proposed method with that of conventional methods by using a public dataset. The experimental results show that the proposed method increases the F1 score by 40% compared with the method without data augmentation, mitigating class imbalance without loss of classification accuracy.

Search for Optimal Data Augmentation Policy for Environmental Sound Classification with Deep Neural Networks (심층 신경망을 통한 자연 소리 분류를 위한 최적의 데이터 증대 방법 탐색)

  • Park, Jinbae;Kumar, Teerath;Bae, Sung-Ho
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.854-860
    • /
    • 2020
  • Deep neural networks have shown remarkable performance in various areas, including image classification and speech recognition. The variety of data generated by augmentation plays an important role in improving the performance of the neural network. The transformation of data in the augmentation process makes it possible for neural networks to be learned more generally through more diverse forms. In the traditional field of image process, not only new augmentation methods have been proposed for improving the performance, but also exploring methods for an optimal augmentation policy that can be changed according to the dataset and structure of networks. Inspired by the prior work, this paper aims to explore to search for an optimal augmentation policy in the field of sound data. We carried out many experiments randomly combining various augmentation methods such as adding noise, pitch shift, or time stretch to empirically search which combination is most effective. As a result, by applying the optimal data augmentation policy we achieve the improved classification accuracy on the environmental sound classification dataset (ESC-50).

Human-Object Interaction Detection Data Augmentation Using Image Concatenation (이미지 이어붙이기를 이용한 인간-객체 상호작용 탐지 데이터 증강)

  • Sang-Baek Lee;Kyu-Chul Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.91-98
    • /
    • 2023
  • Human-object interaction(HOI) detection requires both object detection and interaction recognition, and requires a large amount of data to learn a detection model. Current opened dataset is insufficient in scale for training model enough. In this paper, we propose an easy and effective data augmentation method called Simple Quattro Augmentation(SQA) and Random Quattro Augmentation(RQA) for human-object interaction detection. We show that our proposed method can be easily integrated into State-of-the-Art HOI detection models with HICO-DET dataset.

Enhancement of Tongue Segmentation by Using Data Augmentation (데이터 증강을 이용한 혀 영역 분할 성능 개선)

  • Chen, Hong;Jung, Sung-Tae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.313-322
    • /
    • 2020
  • A large volume of data will improve the robustness of deep learning models and avoid overfitting problems. In automatic tongue segmentation, the availability of annotated tongue images is often limited because of the difficulty of collecting and labeling the tongue image datasets in reality. Data augmentation can expand the training dataset and increase the diversity of training data by using label-preserving transformations without collecting new data. In this paper, augmented tongue image datasets were developed using seven augmentation techniques such as image cropping, rotation, flipping, color transformations. Performance of the data augmentation techniques were studied using state-of-the-art transfer learning models, for instance, InceptionV3, EfficientNet, ResNet, DenseNet and etc. Our results show that geometric transformations can lead to more performance gains than color transformations and the segmentation accuracy can be increased by 5% to 20% compared with no augmentation. Furthermore, a random linear combination of geometric and color transformations augmentation dataset gives the superior segmentation performance than all other datasets and results in a better accuracy of 94.98% with InceptionV3 models.

Data Augmentation Method of Small Dataset for Object Detection and Classification (영상 내 물체 검출 및 분류를 위한 소규모 데이터 확장 기법)

  • Kim, Jin Yong;Kim, Eun Kyeong;Kim, Sungshin
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.184-189
    • /
    • 2020
  • This paper is a study on data augmentation for small dataset by using deep learning. In case of training a deep learning model for recognition and classification of non-mainstream objects, there is a limit to obtaining a large amount of training data. Therefore, this paper proposes a data augmentation method using perspective transform and image synthesis. In addition, it is necessary to save the object area for all training data to detect the object area. Thus, we devised a way to augment the data and save object regions at the same time. To verify the performance of the augmented data using the proposed method, an experiment was conducted to compare classification accuracy with the augmented data by the traditional method, and transfer learning was used in model learning. As experimental results, the model trained using the proposed method showed higher accuracy than the model trained using the traditional method.

Deep-learning based SAR Ship Detection with Generative Data Augmentation (영상 생성적 데이터 증강을 이용한 딥러닝 기반 SAR 영상 선박 탐지)

  • Kwon, Hyeongjun;Jeong, Somi;Kim, SungTai;Lee, Jaeseok;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Ship detection in synthetic aperture radar (SAR) images is an important application in marine monitoring for the military and civilian domains. Over the past decade, object detection has achieved significant progress with the development of convolutional neural networks (CNNs) and lot of labeled databases. However, due to difficulty in collecting and labeling SAR images, it is still a challenging task to solve SAR ship detection CNNs. To overcome the problem, some methods have employed conventional data augmentation techniques such as flipping, cropping, and affine transformation, but it is insufficient to achieve robust performance to handle a wide variety of types of ships. In this paper, we present a novel and effective approach for deep SAR ship detection, that exploits label-rich Electro-Optical (EO) images. The proposed method consists of two components: a data augmentation network and a ship detection network. First, we train the data augmentation network based on conditional generative adversarial network (cGAN), which aims to generate additional SAR images from EO images. Since it is trained using unpaired EO and SAR images, we impose the cycle-consistency loss to preserve the structural information while translating the characteristics of the images. After training the data augmentation network, we leverage the augmented dataset constituted with real and translated SAR images to train the ship detection network. The experimental results include qualitative evaluation of the translated SAR images and the comparison of detection performance of the networks, trained with non-augmented and augmented dataset, which demonstrates the effectiveness of the proposed framework.

Dog-Species Classification through CycleGAN and Standard Data Augmentation

  • Chan, Park;Nammee, Moon
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.67-79
    • /
    • 2023
  • In the image field, data augmentation refers to increasing the amount of data through an editing method such as rotating or cropping a photo. In this study, a generative adversarial network (GAN) image was created using CycleGAN, and various colors of dogs were reflected through data augmentation. In particular, dog data from the Stanford Dogs Dataset and Oxford-IIIT Pet Dataset were used, and 10 breeds of dog, corresponding to 300 images each, were selected. Subsequently, a GAN image was generated using CycleGAN, and four learning groups were established: 2,000 original photos (group I); 2,000 original photos + 1,000 GAN images (group II); 3,000 original photos (group III); and 3,000 original photos + 1,000 GAN images (group IV). The amount of data in each learning group was augmented using existing data augmentation methods such as rotating, cropping, erasing, and distorting. The augmented photo data were used to train the MobileNet_v3_Large, ResNet-152, InceptionResNet_v2, and NASNet_Large frameworks to evaluate the classification accuracy and loss. The top-3 accuracy for each deep neural network model was as follows: MobileNet_v3_Large of 86.4% (group I), 85.4% (group II), 90.4% (group III), and 89.2% (group IV); ResNet-152 of 82.4% (group I), 83.7% (group II), 84.7% (group III), and 84.9% (group IV); InceptionResNet_v2 of 90.7% (group I), 88.4% (group II), 93.3% (group III), and 93.1% (group IV); and NASNet_Large of 85% (group I), 88.1% (group II), 91.8% (group III), and 92% (group IV). The InceptionResNet_v2 model exhibited the highest image classification accuracy, and the NASNet_Large model exhibited the highest increase in the accuracy owing to data augmentation.