Combined cycle power plants are often used to produce power. These days prediction of power plant output based on operating parameters is a major concern. This paper presents an approach to using computational intelligence technique to predict the output power of combined cycle power plant. Computational intelligence techniques have been developed and applied to many real world problems. In this paper, tree architectures of fuzzy neural networks are considered to predict the output power. Tree architectures of fuzzy neural networks have an advantage of reducing the number of rules by selecting fuzzy neurons as nodes and relevant inputs as leaves optimally. For the optimization of the networks, two-step optimization method is used. Genetic algorithms optimize the binary structure of the networks by selecting the nodes and leaves as binary, and followed by random signal-based learning further refines the optimized binary connections in the unit interval. To verify the effectiveness of the proposed method, combined cycle power plant dataset obtained from the UCI Machine Learning Repository Database is considered.
The Journal of the Convergence on Culture Technology
/
v.9
no.6
/
pp.911-917
/
2023
In today's world, we find ourselves facing energy crises due to factors such as war and climate crises. To prepare for these energy crises, many researchers continue to study systems related to energy monitoring and conservation, such as energy management systems, energy monitoring, and energy conservation. In line with these efforts, nations are making it mandatory for energy-consuming facilities to implement these systems. However, these facilities, limited by space and energy constraints, are exploring ways to improve. This research explores the operation of a data collection system using low-performance embedded devices. In this context, it proves that an optimized version of RocksDB, a Key-Value store, outperforms traditional databases when it comes to time-series data. Furthermore, a comprehensive database evaluation tool was employed to assess various databases, including optimized RocksDB and regular RocksDB. In addition, heterogeneous databases and evaluations are conducted using a UD Benchmark tool to evaluate them. As a result, we were able to see that on devices with low performance, the time required was up to 11 times shorter than that of other databases.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.41
no.3
/
pp.173-184
/
2013
A multi-level design optimization framework for aerodynamic design of rotary wing such as propeller and helicopter rotor blades is presented in this study. Strategy of the proposed framework is to enhance aerodynamic performance by sequentially applying the planform and sectional design optimization. In the first level of a planform design, we used a genetic algorithm and blade element momentum theory (BEMT) based on two-dimensional aerodynamic database to find optimal planform variables. After an initial planform design, local flow conditions of blade sections are analyzed using high-fidelity CFD methods. During the next level, a sectional design optimization is conducted using two dimensional Navier-Stokes analysis and a gradient based optimization algorithm. When optimal airfoil shape is determined at the several spanwise locations, a planform design is performed again. Through this iterative design process, not only an optimal flow condition but also an optimal shape of an EAV propeller blade is obtained. To validate the optimized propeller-blade design, it is tested in wind-tunnel facility with different flow conditions. An efficiency, which is slightly less than the expected improvement of 7% predicted by our proposed design framework but is still satisfactory to enhance the aerodynamic performance of EAV system.
This paper presents optimization of a long-span portal steel frame under dynamic wind loads using a surrogate-assisted evolutionary algorithm. Long-span portal steel frames are often used in low-rise industrial and commercial buildings. The structure needs be able to resist the wind loads, and at the same time it should be as light as possible in order to be cost-effective. In this work, numerical model of a portal steel frame is constructed using structural analysis program (SAP2000), with the web-heights at five locations of I-sections of the columns and rafters as the decision variables. In order to evaluate the performance of a given design under dynamic wind loading, the equivalent static wind load (ESWL) is obtained from a database of wind pressures measured in wind tunnel tests. A modified formulation of the problem compared to the one available in the literature is also presented, considering additional design constraints for practicality. Evolutionary algorithms (EA) are often used to solve such non-linear, black-box problems, but when each design evaluation is computationally expensive (e.g., in this case a SAP2000 simulation), the time taken for optimization using EAs becomes untenable. To overcome this challenge, we employ a surrogate-assisted evolutionary algorithm (SAEA) to expedite the convergence towards the optimum design. The presented SAEA uses multiple spatially distributed surrogate models to approximate the simulations more accurately in lieu of commonly used single global surrogate models. Through rigorous numerical experiments, improvements in results and time savings obtained using SAEA over EA are demonstrated.
Transactions of the Korean Society of Mechanical Engineers A
/
v.31
no.1
s.256
/
pp.26-35
/
2007
The vehicle of urban transit is a complex system that consists of various electric, electronic, and mechanical equipments, and the maintenance cost of this complex and large-scale system generally occupies sixty percent of the LCC (Life Cycle Cost). For reasonable establishing of maintenance strategies, safety security and cost limitation must be considered at the same time. The concept of system reliability has been introduced and optimized as the key of reasonable maintenance strategies. For optimization, three preceding studies were accomplished; standardizing a maintenance classification, constructing RBD (Reliability Block Diagram) of VVVF (Variable Voltage Variable Frequency) urban transit, and developing a web based reliability evaluation system. Historical maintenance data in terms of reliability index can be derived from the web based reliability evaluation system. In this paper, we propose applying inverse problem analysis method and hybrid neuro-genetic algorithm to system reliability optimization for using historical maintenance data in database of web based system. Feed-forward multi-layer neural networks trained by back propagation are used to find out the relationship between several component reliability (input) and system reliability (output) of structural system. The inverse problem can be formulated by using neural network. One of the neural network training algorithms, the back propagation algorithm, can attain stable and quick convergence during training process. Genetic algorithm is used to find the minimum square error.
As of July 1999, i,185 lomocotives(excluding metropolitan area electric locomotives) are in Korean National Railroad(KNR). With this limited number of resources assigning locomotives to each trains of timetable is very important in the entire railway management point of view because schedule can be regarded as goods in transportation industry. On a simple rail network, it is rather easier to assign proper locomotives to trains with the experience of operating experts and get optimal assignment solution. However, as the network is getting bigger and complicated, the number of trains and corresponding locomotives will be dramatically increased to rover all the demands required to service all of the trains in timetable. There will be also numerous operational constraints to be considered. Assigning proper locomotives to trains and building optimal cyclic rotations of locomotive routings will result in increasing efficiency of schedule and giving a guarantee of more profit. The purpose of this study is two fold: (1) we consider a planning-level locomotive scheduling problem with the objective of minimizing the wasting cost under various practical constraints and (2) development of implementation prototype program of its assigning result. Not like other countries, i.e. Canada, Sweden, Korean railroad operates on n daily schedule basis. The objective is to find optimal assignment of locomotives of different types to each trains, which minimize the wasting cost. This problem is defined on a planning stage and therefore, does not consider operational constraints such as maintenance and emergency cases. Due to the large scale of the problem size and complexity, we approach with heuristic methods and column generation to find optimal solution. The locomotive scheduling prototype consists of several modules including database, optimization engine and diagram generator. The optimization engine solves MIP model and provides an optimal locomotive schedule using specified optimization algorithms. A cyclic locomotive route diagram can be generated using this optimal schedule through the diagram generator.
Ethernet ring protection (ERP) technology, which is defined in ITU-T Recommendation G.8032, has been developed to provide carrier grade recovery for Ethernet ring networks. However, the filtering database (FDB) flush method adopted in the current ERP standard has the drawback of introducing a large amount of transient traffic overshoot caused by flooded Ethernet frames right after protection switching. This traffic overshooting is especially critical when a ring provides services to a large number of clients. According to our experimental results, the traditional FDB flush requires a link capacity about sixteen times greater than the steady state traffic bandwidth. This paper introduces four flush optimization schemes to resolve this issue and investigates how the proposed schemes deal with the transient traffic overshoot on a multi-ring network under failure conditions. With a network simulator, we evaluate the performance of the proposed schemes and compare them to the conventional FDB flush scheme. Among the proposed methods, the extended FDB advertisement method shows the fastest and most stable protection switching performance.
Hydraulic modeling is widely used to simulate wastewater flow. The simulated models are used to prevent flood and many other problems associated with wastewater flow in planning or rehabilitating sewer systems. In this study, MAKESW (An engineer, South Korea), MOUSE (DHI, Denmark), and SWMM (XPSoftware, USA) are used to for hydraulic modeling of wastewater in C-city, South Korea and E-city, Iraq. These modeling tools produced different results. SWMM comparably overpredicted runoff and peak flow. In using SWMM, use of accurate data with a high confidential level, detail examination over the target basin surface, and the careful selection of a runoff model, which describes Korea's unique hydraulic characteristics are recommended. Modification of existing models through the optimization of variables cannot be achieved at this moment. Setting up an integrated modeling environment is considered to be essential to utilize modeling and further apply the results for various projects. Standardization of GIS database, the criteria for and the scope of model application, and database management systems need to be prepared to expand modeling application.
Proceedings of the Korean Institute of Building Construction Conference
/
2010.05a
/
pp.143-147
/
2010
Due to the diversification and complication of construction projects, controlling risks from the early design-planning phase gives huge impact on success of the construction project. As a part of managing uncertainties it is also important to estimate the project cost several times. Especially, estimating project cost in the early stage gives effects on making a budget for projects. This study estimated the apartment project cost using case-based reasoning(CBR), which is the process of solving new problems based on the past problems. For this, we deduced the apartment cost influence factors which can be gathered in the early stage of project. Based on the factors we established the database for apartment project and calculated the attribute value, attribute similarity and case similarity. Although we retrieve the most similar case from the database, it is very hard to utilize it directly due to the uniqueness of each project. So, Genetic Algorithm(GA) was applied in revising the cost of the retrieved-case. Therefore, the accuracy of the prediction was improved by GA optimization.
Journal of the Institute of Convergence Signal Processing
/
v.14
no.1
/
pp.57-61
/
2013
A hybrid genetic algorithm based learning method for the morphological neural networks (MNN) is proposed. The morphological neural networks are based on max-plus algebra, therefore, it is difficult to optimize the coefficients of MNN by the learning method with derivative operations. In order to solve the difficulty, a hybrid genetic algorithm based learning method to optimize the coefficients of MNN is used. Through the image compression/reconstruction experiment using test images extracted from standard image database(SIDBA), it is confirmed that the quality of the reconstructed images obtained by the proposed method is better than that obtained by the conventional neural networks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.