• Title/Summary/Keyword: Database Optimization

Search Result 291, Processing Time 0.03 seconds

Output Power Prediction of Combined Cycle Power Plant using Logic-based Tree Structured Fuzzy Neural Networks (로직에 기반 한 트리 구조의 퍼지 뉴럴 네트워크를 이용한 복합 화력 발전소의 출력 예측)

  • Han, Chang-Wook;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.529-533
    • /
    • 2019
  • Combined cycle power plants are often used to produce power. These days prediction of power plant output based on operating parameters is a major concern. This paper presents an approach to using computational intelligence technique to predict the output power of combined cycle power plant. Computational intelligence techniques have been developed and applied to many real world problems. In this paper, tree architectures of fuzzy neural networks are considered to predict the output power. Tree architectures of fuzzy neural networks have an advantage of reducing the number of rules by selecting fuzzy neurons as nodes and relevant inputs as leaves optimally. For the optimization of the networks, two-step optimization method is used. Genetic algorithms optimize the binary structure of the networks by selecting the nodes and leaves as binary, and followed by random signal-based learning further refines the optimized binary connections in the unit interval. To verify the effectiveness of the proposed method, combined cycle power plant dataset obtained from the UCI Machine Learning Repository Database is considered.

Evaluation of Edge-Based Data Collection System for Key-Value Store Utilizing Time-Series Data Optimization Techniques (시계열 데이터 최적화 기법을 활용한 Key-value store의 엣지 기반 데이터 수집 시스템 평가)

  • Woojin Cho;Hyung-ah Lee;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.911-917
    • /
    • 2023
  • In today's world, we find ourselves facing energy crises due to factors such as war and climate crises. To prepare for these energy crises, many researchers continue to study systems related to energy monitoring and conservation, such as energy management systems, energy monitoring, and energy conservation. In line with these efforts, nations are making it mandatory for energy-consuming facilities to implement these systems. However, these facilities, limited by space and energy constraints, are exploring ways to improve. This research explores the operation of a data collection system using low-performance embedded devices. In this context, it proves that an optimized version of RocksDB, a Key-Value store, outperforms traditional databases when it comes to time-series data. Furthermore, a comprehensive database evaluation tool was employed to assess various databases, including optimized RocksDB and regular RocksDB. In addition, heterogeneous databases and evaluations are conducted using a UD Benchmark tool to evaluate them. As a result, we were able to see that on devices with low performance, the time required was up to 11 times shorter than that of other databases.

Aerodynamic Design of EAV Propeller using a Multi-Level Design Optimization Framework (다단 최적 설계 프레임워크를 활용한 전기추진 항공기 프로펠러 공력 최적 설계)

  • Kwon, Hyung-Il;Yi, Seul-Gi;Choi, Seongim;Kim, Keunbae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.173-184
    • /
    • 2013
  • A multi-level design optimization framework for aerodynamic design of rotary wing such as propeller and helicopter rotor blades is presented in this study. Strategy of the proposed framework is to enhance aerodynamic performance by sequentially applying the planform and sectional design optimization. In the first level of a planform design, we used a genetic algorithm and blade element momentum theory (BEMT) based on two-dimensional aerodynamic database to find optimal planform variables. After an initial planform design, local flow conditions of blade sections are analyzed using high-fidelity CFD methods. During the next level, a sectional design optimization is conducted using two dimensional Navier-Stokes analysis and a gradient based optimization algorithm. When optimal airfoil shape is determined at the several spanwise locations, a planform design is performed again. Through this iterative design process, not only an optimal flow condition but also an optimal shape of an EAV propeller blade is obtained. To validate the optimized propeller-blade design, it is tested in wind-tunnel facility with different flow conditions. An efficiency, which is slightly less than the expected improvement of 7% predicted by our proposed design framework but is still satisfactory to enhance the aerodynamic performance of EAV system.

Optimization of long span portal frames using spatially distributed surrogates

  • Zhang, Zhifang;Pan, Jingwen;Fu, Jiyang;Singh, Hemant Kumar;Pi, Yong-Lin;Wu, Jiurong;Rao, Rui
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.227-237
    • /
    • 2017
  • This paper presents optimization of a long-span portal steel frame under dynamic wind loads using a surrogate-assisted evolutionary algorithm. Long-span portal steel frames are often used in low-rise industrial and commercial buildings. The structure needs be able to resist the wind loads, and at the same time it should be as light as possible in order to be cost-effective. In this work, numerical model of a portal steel frame is constructed using structural analysis program (SAP2000), with the web-heights at five locations of I-sections of the columns and rafters as the decision variables. In order to evaluate the performance of a given design under dynamic wind loading, the equivalent static wind load (ESWL) is obtained from a database of wind pressures measured in wind tunnel tests. A modified formulation of the problem compared to the one available in the literature is also presented, considering additional design constraints for practicality. Evolutionary algorithms (EA) are often used to solve such non-linear, black-box problems, but when each design evaluation is computationally expensive (e.g., in this case a SAP2000 simulation), the time taken for optimization using EAs becomes untenable. To overcome this challenge, we employ a surrogate-assisted evolutionary algorithm (SAEA) to expedite the convergence towards the optimum design. The presented SAEA uses multiple spatially distributed surrogate models to approximate the simulations more accurately in lieu of commonly used single global surrogate models. Through rigorous numerical experiments, improvements in results and time savings obtained using SAEA over EA are demonstrated.

Reliability Optimization of Urban Transit Brake System For Efficient Maintenance (효율적 유지보수를 위한 도시철도 전동차 브레이크의 시스템 신뢰도 최적화)

  • Bae, Chul-Ho;Kim, Hyun-Jun;Lee, Jung-Hwan;Kim, Se-Hoon;Lee, Ho-Yong;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.26-35
    • /
    • 2007
  • The vehicle of urban transit is a complex system that consists of various electric, electronic, and mechanical equipments, and the maintenance cost of this complex and large-scale system generally occupies sixty percent of the LCC (Life Cycle Cost). For reasonable establishing of maintenance strategies, safety security and cost limitation must be considered at the same time. The concept of system reliability has been introduced and optimized as the key of reasonable maintenance strategies. For optimization, three preceding studies were accomplished; standardizing a maintenance classification, constructing RBD (Reliability Block Diagram) of VVVF (Variable Voltage Variable Frequency) urban transit, and developing a web based reliability evaluation system. Historical maintenance data in terms of reliability index can be derived from the web based reliability evaluation system. In this paper, we propose applying inverse problem analysis method and hybrid neuro-genetic algorithm to system reliability optimization for using historical maintenance data in database of web based system. Feed-forward multi-layer neural networks trained by back propagation are used to find out the relationship between several component reliability (input) and system reliability (output) of structural system. The inverse problem can be formulated by using neural network. One of the neural network training algorithms, the back propagation algorithm, can attain stable and quick convergence during training process. Genetic algorithm is used to find the minimum square error.

Optimization of Planning-Level Locomotive Scheduling at KNR and Development of Its Implementation Prototype Program (한국철도에서의 계획단계 동력차 스케줄링 최적화 및 전문가 지원시스템의 프로토타입 프로그램 개발에 관한 연구)

  • 문대섭;김동오
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.46-53
    • /
    • 1999
  • As of July 1999, i,185 lomocotives(excluding metropolitan area electric locomotives) are in Korean National Railroad(KNR). With this limited number of resources assigning locomotives to each trains of timetable is very important in the entire railway management point of view because schedule can be regarded as goods in transportation industry. On a simple rail network, it is rather easier to assign proper locomotives to trains with the experience of operating experts and get optimal assignment solution. However, as the network is getting bigger and complicated, the number of trains and corresponding locomotives will be dramatically increased to rover all the demands required to service all of the trains in timetable. There will be also numerous operational constraints to be considered. Assigning proper locomotives to trains and building optimal cyclic rotations of locomotive routings will result in increasing efficiency of schedule and giving a guarantee of more profit. The purpose of this study is two fold: (1) we consider a planning-level locomotive scheduling problem with the objective of minimizing the wasting cost under various practical constraints and (2) development of implementation prototype program of its assigning result. Not like other countries, i.e. Canada, Sweden, Korean railroad operates on n daily schedule basis. The objective is to find optimal assignment of locomotives of different types to each trains, which minimize the wasting cost. This problem is defined on a planning stage and therefore, does not consider operational constraints such as maintenance and emergency cases. Due to the large scale of the problem size and complexity, we approach with heuristic methods and column generation to find optimal solution. The locomotive scheduling prototype consists of several modules including database, optimization engine and diagram generator. The optimization engine solves MIP model and provides an optimal locomotive schedule using specified optimization algorithms. A cyclic locomotive route diagram can be generated using this optimal schedule through the diagram generator.

  • PDF

Flush Optimizations to Guarantee Less Transient Traffic in Ethernet Ring Protection

  • Lee, Kwang-Koog;Ryoo, Jeong-Dong
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.184-194
    • /
    • 2010
  • Ethernet ring protection (ERP) technology, which is defined in ITU-T Recommendation G.8032, has been developed to provide carrier grade recovery for Ethernet ring networks. However, the filtering database (FDB) flush method adopted in the current ERP standard has the drawback of introducing a large amount of transient traffic overshoot caused by flooded Ethernet frames right after protection switching. This traffic overshooting is especially critical when a ring provides services to a large number of clients. According to our experimental results, the traditional FDB flush requires a link capacity about sixteen times greater than the steady state traffic bandwidth. This paper introduces four flush optimization schemes to resolve this issue and investigates how the proposed schemes deal with the transient traffic overshoot on a multi-ring network under failure conditions. With a network simulator, we evaluate the performance of the proposed schemes and compare them to the conventional FDB flush scheme. Among the proposed methods, the extended FDB advertisement method shows the fastest and most stable protection switching performance.

Evaluation of Sewer Capacity using Kinetic Hydraulic Model (동력학적 수리해석모델 해석을 통한 하수관거능력 평가)

  • Yang, Hae Jin;Jun, Hang Bae;Son, Dae Ik;Lee, Joon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.565-572
    • /
    • 2009
  • Hydraulic modeling is widely used to simulate wastewater flow. The simulated models are used to prevent flood and many other problems associated with wastewater flow in planning or rehabilitating sewer systems. In this study, MAKESW (An engineer, South Korea), MOUSE (DHI, Denmark), and SWMM (XPSoftware, USA) are used to for hydraulic modeling of wastewater in C-city, South Korea and E-city, Iraq. These modeling tools produced different results. SWMM comparably overpredicted runoff and peak flow. In using SWMM, use of accurate data with a high confidential level, detail examination over the target basin surface, and the careful selection of a runoff model, which describes Korea's unique hydraulic characteristics are recommended. Modification of existing models through the optimization of variables cannot be achieved at this moment. Setting up an integrated modeling environment is considered to be essential to utilize modeling and further apply the results for various projects. Standardization of GIS database, the criteria for and the scope of model application, and database management systems need to be prepared to expand modeling application.

Improving the Accuracy of Early Stage Cost Estimation in Apartment Construction Project (공동주택 프로젝트의 초기 공사비 예측정확도 향상에 관한 연구)

  • Lim, So-Yean;Yeo, Sang-Gu;Go, Seong-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.143-147
    • /
    • 2010
  • Due to the diversification and complication of construction projects, controlling risks from the early design-planning phase gives huge impact on success of the construction project. As a part of managing uncertainties it is also important to estimate the project cost several times. Especially, estimating project cost in the early stage gives effects on making a budget for projects. This study estimated the apartment project cost using case-based reasoning(CBR), which is the process of solving new problems based on the past problems. For this, we deduced the apartment cost influence factors which can be gathered in the early stage of project. Based on the factors we established the database for apartment project and calculated the attribute value, attribute similarity and case similarity. Although we retrieve the most similar case from the database, it is very hard to utilize it directly due to the uniqueness of each project. So, Genetic Algorithm(GA) was applied in revising the cost of the retrieved-case. Therefore, the accuracy of the prediction was improved by GA optimization.

  • PDF

Optimization of Max-Plus based Neural Networks using Genetic Algorithms (유전 알고리즘을 이용한 Max-Plus 기반의 뉴럴 네트워크 최적화)

  • Han, Chang-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.57-61
    • /
    • 2013
  • A hybrid genetic algorithm based learning method for the morphological neural networks (MNN) is proposed. The morphological neural networks are based on max-plus algebra, therefore, it is difficult to optimize the coefficients of MNN by the learning method with derivative operations. In order to solve the difficulty, a hybrid genetic algorithm based learning method to optimize the coefficients of MNN is used. Through the image compression/reconstruction experiment using test images extracted from standard image database(SIDBA), it is confirmed that the quality of the reconstructed images obtained by the proposed method is better than that obtained by the conventional neural networks.