• Title/Summary/Keyword: Data-driven methods

Search Result 319, Processing Time 0.024 seconds

Improvement of WRF-Hydro streamflow prediction using Machine Learning Methods (머신러닝기법을 이용한 WRF-Hydro 하천수 흐름 예측 개선)

  • Cho, Kyeungwoo;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.115-115
    • /
    • 2019
  • 하천수 흐름예측에 대한 연구는 대부분 WRF-Hydro와 같은 과정기반 모델링 시스템을 이용한다. 과정기반 모델링 시스템은 물리적 현상을 일반화한 수식으로 구성되어있다. 일반화된 수식은 불확실성을 내포하고 있으며 지역적 특성도 반영하지 못한다. 특히 수식에 사용되는 입력자료는 측정값으로 오차가 존재한다. 따라서 과정기반 모델링 시스템 예측결과는 계통오차와 우연오차가 존재한다. 현재 매개변수 보정을 통해 예측결과를 개선하는 방법을 사용하고 있으나 한계가 있다. 본 연구는 이러한 한계를 극복하기 위해 상호보완적인 Data-driven 모델을 구축하여 과정기반 모델링 시스템 결과를 개선하고자 하였다. Data-driven 모델 구축을 위해 머신러닝 기법인 instance-based weighting(IBW)과 support vector regression(SVR)을 사용하였다. 구축된 Data-driven 모델은 한반도 지역 주요 저수지 및 호수의 하천수 흐름예측을 통해 검증하였다. 검증을 위해 과정기반 모델링 시스템으로 WRF-Hydro를 구동하였다. 입력자료는 기상청의 국지수치예측모델자료(LDAPS), HydroSHEDS의 수치표고모델자료(DEM), 국가지리정보원의 저수지 및 호수 연속수치지형도를 사용하였다. 본 연구를 통해 구축된 Data-driven모델은 기존 과정기반 모델링 시스템의 오류수정 한계를 머신러닝을 이용하여 개선할 수 있는 가능성을 제시하였다.

  • PDF

Can Data-Driven Analysis Demonstrate the Plausibility of Traditional Medical Typology?

  • Chae, Han;Lee, Siwoo;Lee, Soo Jin
    • Journal of Oriental Neuropsychiatry
    • /
    • v.32 no.4
    • /
    • pp.303-320
    • /
    • 2021
  • Objectives: Although medical typologies based on indigenous biopsychological ideas have been described, their integrity has been questioned due to its theory-driven nature in categorization. Therefore, studies on the Sasang typology, a temperament-based traditional Korean medicine, are needed to examine whether it is possible to classify types of specific biopsychological profiles using data-driven analysis. Methods: Psychological measures of the Eastern Sasang Personality Questionnaire (SPQ) and Western NEO-Personality Inventory (NEO-PI) along with physical measures and Sasang types were acquired from 2,049 participants. Latent groups based on the SPQ and NEO-PI subscale scores were extracted using Latent Profile Analysis. Their psychosomatic features were then compared with those of Sasang types. Results: Three SPQ-based latent groups showed distinctive psychological and physical features consistent with those of Sasang types. However, four NEOPI-based latent groups presented only psychological features. Furthermore, SPQ-High and SPQ-Low latent groups demonstrated similar psychosomatic profiles to those of So-Yang and So-Eum Sasang types, respectively. Conclusions: This study illustrates that biopsychological profiles of Sasang types are supported by psychosomatic features of latent groups based on SPQ of Eastern psychology, signifying that the categorization of Sasang typology have acceptable validity and reliability.

A Big Data-Driven Business Data Analysis System: Applications of Artificial Intelligence Techniques in Problem Solving

  • Donggeun Kim;Sangjin Kim;Juyong Ko;Jai Woo Lee
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • It is crucial to develop effective and efficient big data analytics methods for problem-solving in the field of business in order to improve the performance of data analytics and reduce costs and risks in the analysis of customer data. In this study, a big data-driven data analysis system using artificial intelligence techniques is designed to increase the accuracy of big data analytics along with the rapid growth of the field of data science. We present a key direction for big data analysis systems through missing value imputation, outlier detection, feature extraction, utilization of explainable artificial intelligence techniques, and exploratory data analysis. Our objective is not only to develop big data analysis techniques with complex structures of business data but also to bridge the gap between the theoretical ideas in artificial intelligence methods and the analysis of real-world data in the field of business.

A Study on the Noisy Speech Recognition Based on the Data-Driven Model Parameter Compensation (직접데이터 기반의 모델적응 방식을 이용한 잡음음성인식에 관한 연구)

  • Chung, Yong-Joo
    • Speech Sciences
    • /
    • v.11 no.2
    • /
    • pp.247-257
    • /
    • 2004
  • There has been many research efforts to overcome the problems of speech recognition in the noisy conditions. Among them, the model-based compensation methods such as the parallel model combination (PMC) and vector Taylor series (VTS) have been found to perform efficiently compared with the previous speech enhancement methods or the feature-based approaches. In this paper, a data-driven model compensation approach that adapts the HMM(hidden Markv model) parameters for the noisy speech recognition is proposed. Instead of assuming some statistical approximations as in the conventional model-based methods such as the PMC, the statistics necessary for the HMM parameter adaptation is directly estimated by using the Baum-Welch algorithm. The proposed method has shown improved results compared with the PMC for the noisy speech recognition.

  • PDF

An integrated approach for structural health monitoring using an in-house built fiber optic system and non-parametric data analysis

  • Malekzadeh, Masoud;Gul, Mustafa;Kwon, Il-Bum;Catbas, Necati
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.917-942
    • /
    • 2014
  • Multivariate statistics based damage detection algorithms employed in conjunction with novel sensing technologies are attracting more attention for long term Structural Health Monitoring of civil infrastructure. In this study, two practical data driven methods are investigated utilizing strain data captured from a 4-span bridge model by Fiber Bragg Grating (FBG) sensors as part of a bridge health monitoring study. The most common and critical bridge damage scenarios were simulated on the representative bridge model equipped with FBG sensors. A high speed FBG interrogator system is developed by the authors to collect the strain responses under moving vehicle loads using FBG sensors. Two data driven methods, Moving Principal Component Analysis (MPCA) and Moving Cross Correlation Analysis (MCCA), are coded and implemented to handle and process the large amount of data. The efficiency of the SHM system with FBG sensors, MPCA and MCCA methods for detecting and localizing damage is explored with several experiments. Based on the findings presented in this paper, the MPCA and MCCA coupled with FBG sensors can be deemed to deliver promising results to detect both local and global damage implemented on the bridge structure.

Comparing Methodology of Building Energy Analysis - Comparative Analysis from steady-state simulation to data-driven Analysis - (건물에너지 분석 방법론 비교 - Steady-state simulation에서부터 Data-driven 방법론의 비교 분석 -)

  • Cho, Sooyoun;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.77-86
    • /
    • 2017
  • Purpose: Because of the growing concern over fossil fuel use and increasing demand for greenhouse gas emission reduction since the 1990s, the building energy analysis field has produced various types of methods, which are being applied more often and broadly than ever. A lot of research products have been actively proposed in the area of the building energy simulation for over 50 years around the world. However, in the last 20 years, there have been only a few research cases where the trend of building energy analysis is examined, estimated or compared. This research aims to investigate a trend of the building energy analysis by focusing on methodology and characteristics of each method. Method: The research papers addressing the building energy analysis are classified into two types of method: engineering analysis and algorithm estimation. Especially, EPG(Energy Performance Gap), which is the limit both for the existing engineering method and the single algorithm-based estimation method, results from comparing data of two different levels- in other words, real time data and simulation data. Result: When one or more ensemble algorithms are used, more accurate estimations of energy consumption and performance are produced, and thereby improving the problem of energy performance gap.

Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data

  • MD Saiful Islam;Mi-Jin Kim;Kyo-Mun Ku;Hyo-Young Kim;Kihyun Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.45-53
    • /
    • 2024
  • The maintenance of semiconductor equipment is crucial for the continuous growth of the semiconductor market. System management is imperative given the anticipated increase in the capacity and complexity of industrial equipment. Ensuring optimal operation of manufacturing processes is essential to maintaining a steady supply of numerous parts. Particularly, monitoring the status of substrate transfer robots, which play a central role in these processes, is crucial. Diagnosing failures of their major components is vital for preventive maintenance. Fault diagnosis methods can be broadly categorized into physics-based and data-driven approaches. This study focuses on data-driven fault diagnosis methods due to the limitations of physics-based approaches. We propose a methodology for data acquisition and preprocessing for robot fault diagnosis. Data is gathered from vibration sensors, and the data preprocessing method is applied to the vibration signals. Subsequently, the dataset is trained using Gradient Tree-based XGBoost machine learning classification algorithms. The effectiveness of the proposed model is validated through performance evaluation metrics, including accuracy, F1 score, and confusion matrix. The XGBoost classifiers achieve an accuracy of approximately 92.76% and an equivalent F1 score. ROC curves indicate exceptional performance in class discrimination, with 100% discrimination for the normal class and 98% discrimination for abnormal classes.

A Study for Time-Driven Scheduling for Concurrency Control and Atomic Commitment of Distributed Real-Time Transaction Processing Systems (분산 실시간 트랜잭션 처리 시스템의 동시 실행 제어와 원자적 종료를 위한 시간 구동형 스케쥴징 기법 연구)

  • Kim, Jin-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1418-1432
    • /
    • 1996
  • In addition t improved availability, replication of data can enhance performance of distributed real-time transaction processing system by allowing transactions initiated at multiple node to be processed concurrently. To satisfy both the consistency and real-time constraints, it is necessary to integrate concurrency control and atomic commitment protocols with time-driven scheduling methods. blocking caused by existing concurrency control protocols is incompatible with time-driven scheduling because they cannot schedule transactions to meet given deadlines. To maintain consistency of replicated data and to provide a high degree of schedulability and predictability , the proposed time-driven scheduling methods integrate optimistic concurrency control protocols that minimize the duration of blocking and produce the serialization by reflecting the priority transactions. The atomicity of transactions is maintained to ensure successful commitment in distributed environment. Specific time-driven scheduling techniqueare discussed, together with an analysis of the performance of this scheduling.

  • PDF

Brand Fandom Dynamic Analysis Framework based on Customer Data in Online Communities

  • Yu Cheng;Sangwoo Park;Inseop Lee;Changryong Kim;Sanghun Sul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2222-2240
    • /
    • 2023
  • Brand fandom refers to a collection of consumers with strong emotions toward a brand. Studying the dynamics of brand fandom can help brands understand which services or strategies influence their consumers to become a part of brand fandom. However, existing literature on fandom in the last three decades has mainly used qualitative methods, and there is still a lack of research on fandom using quantitative methods. Specifically, previous studies lack a framework for locating fandoms from online textual data and analyzing their dynamics. This study proposes a framework for exploring brand fandom dynamics based on online textual data. This framework consists of four phases based on the design thinking model: Preparing Data, Defining Fandom Categories, Generating Fandom Dynamics, and Analyzing Fandom Dynamics. This framework uses techniques such as social network analysis and process mining, combined with brand personality theory. We demonstrate the applicability of this framework using case studies of two Korean home appliance brands. The dataset contains 14,593 posts by consumers in 374 online communities. The results show that the proposed framework can analyze brand fandom dynamics using textual customer data. Our study contributes to the interdisciplinary research at the intersection of data-driven service design and consumer culture quantification.