• Title/Summary/Keyword: Data optimization

Search Result 3,517, Processing Time 0.03 seconds

Optimization-Based Pattern Generation for LAD (최적화에 기반을 둔 LAD의 패턴 생성 기법)

  • Jang, In-Yong;Ryoo, Hong-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.11-18
    • /
    • 2006
  • The logical analysis of data(LAD) is a Boolean-logic based data mining tool. A critical step in analyzing data by LAD is the pattern generation stage where useful knowledge and hidden structural information in data is discovered in the form of patterns. A conventional method for pattern generation in LAD is based on term enumeration that renders the generation of higher degree patterns practically impossible. In this paper, we present a novel optimization-based pattern generation methodology and propose two mathematical programming models, a mixed 0-1 integer and linear programming (MILP) formulation and a well-studied set covering problem (SCP) formulation for the generation of optimal and heuristic patterns, respectively. With benchmark datasets, we demonstrate the effectiveness of our models by automatically generating with ease patterns of high complexity that cannot be generated with the conventional approach.

  • PDF

Combined time bound optimization of control, communication, and data processing for FSO-based 6G UAV aerial networks

  • Seo, Seungwoo;Ko, Da-Eun;Chung, Jong-Moon
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.700-711
    • /
    • 2020
  • Because of the rapid increase of mobile traffic, flexible broadband supportive unmanned aerial vehicle (UAV)-based 6G mobile networks using free space optical (FSO) links have been recently proposed. Considering the advancements made in UAVs, big data processing, and artificial intelligence precision control technologies, the formation of an additional wireless network based on UAV aerial platforms to assist the existing fixed base stations of the mobile radio access network is considered a highly viable option in the near future. In this paper, a combined time bound optimization scheme is proposed that can adaptively satisfy the control and communication time constraints as well as the processing time constraints in FSO-based 6G UAV aerial networks. The proposed scheme controls the relation between the number of data flows, input data rate, number of worker nodes considering the time bounds, and the errors that occur during communication and data processing. The simulation results show that the proposed scheme is very effective in satisfying the time constraints for UAV control and radio access network services, even when errors in communication and data processing may occur.

Classification of Imbalanced Data Based on MTS-CBPSO Method: A Case Study of Financial Distress Prediction

  • Gu, Yuping;Cheng, Longsheng;Chang, Zhipeng
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.682-693
    • /
    • 2019
  • The traditional classification methods mostly assume that the data for class distribution is balanced, while imbalanced data is widely found in the real world. So it is important to solve the problem of classification with imbalanced data. In Mahalanobis-Taguchi system (MTS) algorithm, data classification model is constructed with the reference space and measurement reference scale which is come from a single normal group, and thus it is suitable to handle the imbalanced data problem. In this paper, an improved method of MTS-CBPSO is constructed by introducing the chaotic mapping and binary particle swarm optimization algorithm instead of orthogonal array and signal-to-noise ratio (SNR) to select the valid variables, in which G-means, F-measure, dimensionality reduction are regarded as the classification optimization target. This proposed method is also applied to the financial distress prediction of Chinese listed companies. Compared with the traditional MTS and the common classification methods such as SVM, C4.5, k-NN, it is showed that the MTS-CBPSO method has better result of prediction accuracy and dimensionality reduction.

Optimization of water quality monitoring stations using genetic algorithm, a case study, Sefid-Rud River, Iran

  • Asadollahfardi, Gholamreza;Heidarzadeh, Nima;Mosalli, Atabak;Sekhavati, Ali
    • Advances in environmental research
    • /
    • v.7 no.2
    • /
    • pp.87-107
    • /
    • 2018
  • Water quality monitoring network needs periodic evaluations based on environmental demands and financial constraints. We used a genetic algorithm to optimize the existing water quality monitoring stations on the Sefid-Rud River, which is located in the North of Iran. Our objective was to optimize the existing stations for drinking and irrigation purposes, separately. The technique includes two stages called data preparation and the optimization. On the data preparation stage, first the basin was divided into four sections and each section was consisted of some stations. Then, the score of each station was computed using the data provided by the water Research Institute of the Ministry of energy. After that, we applied a weighting method by providing questionnaires to ask the experts to define the significance of each parameter. In the next step, according to the scores, stations were prioritized cumulatively. Finally, the genetic algorithm was applied to identify the best combination. The results indicated that out of 21 existing monitoring stations, 14 stations should remain in the network for both irrigation and drinking purposes. The results also had a good compliance with the previous studies which used dynamic programming as the optimization technique.

The Comparative Analysis of Optimization Methods for the Parameter Calibration of Rainfall-Runoff Models (강우-유출모형의 매개변수 보정을 위한 최적화 기법의 비교분석)

  • Kim, Sun-Joo;Jee, Yong-Geun;Kim, Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.3-13
    • /
    • 2005
  • The conceptual rainfall-runoff models are used to predict complex hydrological effects of a basin. However, to obtain reliable results, there are some difficulties and problems in choosing optimum model, calibrating, and verifying the chosen model suitable for hydrological characteristics of the basin. In this study, Genetic Algorithm and SCE-UA method as global optimization methods were applied to compare the each optimization technique and to analyze the application for the rainfall-runoff models. Modified TANK model that is used to calculate outflow for watershed management and reservoir operation etc. was optimized as a long term rainfall-runoff model. And storage-function model that is used to predict real-time flood using historical data was optimized as a short term rainfall-runoff model. The optimized models were applied to simulate runoff on Pyeongchang-river watershed and Bocheong-stream watershed in 2001 and 2002. In the historical data study, the Genetic Algorithm and the SCE-UA method showed consistently good results considering statistical values compared with observed data.

Optimization-Based Buyer-Supplier Price Negotiation: Supporting Buyer's Scenarios with Suppler Selection

  • Lee, Pyoungsoo;Jeon, Dong-Han;Seo, Yong-Won
    • Journal of Distribution Science
    • /
    • v.15 no.6
    • /
    • pp.37-46
    • /
    • 2017
  • Purpose - The paper aims to propose an optimization model for supporting the buyer-seller negotiations. We consider the price, quality, and delivery as evaluation criteria, also recognized as objectives for negotiation. Research design, data, and methodology - The methodology used in this paper involves the input-oriented DEA with the inverse optimization. Under the existence of several potential suppliers, the price would be considered to be the decision variable to conclude the negotiation so as to meet the desired level of the quality and delivery. The data set for six suppliers with three criteria is examined by the proposed approach. Results - We present the decision aid model by displaying the price spectrum as the changes of desired output levels. It overcomes the shortcomings from previous researches mainly based on the discrete types of scenario generations. This approach shows that the obtained results help the buyer understand the trade-offs between price and performance when he/she considers the negotiation. Conclusions - The paper contributes to the numerical models for buyer-supplier negotiation in that the model for the supplier evaluation and selection is closely linked with the model for negotiation. In addition, it eliminates the unrealistic negotiation strategy, and provides the negotiation strategies that the buyer would not shift the burden on suppliers by maintaining the current efficiency.

Multiple-inputs Dual-outputs Process Characterization and Optimization of HDP-CVD SiO2 Deposition

  • Hong, Sang-Jeen;Hwang, Jong-Ha;Chun, Sang-Hyun;Han, Seung-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.135-145
    • /
    • 2011
  • Accurate process characterization and optimization are the first step for a successful advanced process control (APC), and they should be followed by continuous monitoring and control in order to run manufacturing processes most efficiently. In this paper, process characterization and recipe optimization methods with multiple outputs are presented in high density plasma-chemical vapor deposition (HDP-CVD) silicon dioxide deposition process. Five controllable process variables of Top $SiH_4$, Bottom $SiH_4$, $O_2$, Top RF Power, and Bottom RF Power, and two responses of interest, such as deposition rate and uniformity, are simultaneously considered employing both statistical response surface methodology (RSM) and neural networks (NNs) based genetic algorithm (GA). Statistically, two phases of experimental design was performed, and the established statistical models were optimized using performance index (PI). Artificial intelligently, NN process model with two outputs were established, and recipe synthesis was performed employing GA. Statistical RSM offers minimum numbers of experiment to build regression models and response surface models, but the analysis of the data need to satisfy underlying assumption and statistical data analysis capability. NN based-GA does not require any underlying assumption for data modeling; however, the selection of the input data for the model establishment is important for accurate model construction. Both statistical and artificial intelligent methods suggest competitive characterization and optimization results in HDP-CVD $SiO_2$ deposition process, and the NN based-GA method showed 26% uniformity improvement with 36% less $SiH_4$ gas usage yielding 20.8 ${\AA}/sec$ deposition rate.

Reliability-based Structural Design Optimization Considering Probability Model Uncertainties - Part 1: Design Method (확률모델 불확실성을 고려한 구조물의 신뢰도 기반 최적설계 - 제1편: 설계 방법)

  • Ok, Seung-Yong;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.148-157
    • /
    • 2012
  • Reliability-based design optimization (RBDO) problem is usually formulated as an optimization problem to minimize an objective function subjected to probabilistic constraint functions which may include deterministic design variables as well as random variables. The challenging task is that, because the probability models of the random variables are often assumed based on limited data, there exists a possibility of selecting inappropriate distribution models and/or model parameters for the random variables, which can often lead to disastrous consequences. In order to select the most appropriate distribution model from the limited observation data as well as model parameters, this study takes into account a set of possible candidate models for the random variables. The suitability of each model is then investigated by employing performance and risk functions. In this regard, this study enables structural design optimization and fitness assessment of the distribution models of the random variables at the same time. As the first paper of a two-part series, this paper describes a new design method considering probability model uncertainties. The robust performance of the proposed method is presented in Part 2. To demonstrate the effectiveness of the proposed method, an example of ten-bar truss structure is considered. The numerical results show that the proposed method can provide the optimal design variables while guaranteeing the most desirable distribution models for the random variables even in case the limited data are only available.

Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis (정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).

The development of four efficient optimal neural network methods in forecasting shallow foundation's bearing capacity

  • Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.151-168
    • /
    • 2024
  • This research aimed to appraise the effectiveness of four optimization approaches - cuckoo optimization algorithm (COA), multi-verse optimization (MVO), particle swarm optimization (PSO), and teaching-learning-based optimization (TLBO) - that were enhanced with an artificial neural network (ANN) in predicting the bearing capacity of shallow foundations located on cohesionless soils. The study utilized a database of 97 laboratory experiments, with 68 experiments for training data sets and 29 for testing data sets. The ANN algorithms were optimized by adjusting various variables, such as population size and number of neurons in each hidden layer, through trial-and-error techniques. Input parameters used for analysis included width, depth, geometry, unit weight, and angle of shearing resistance. After performing sensitivity analysis, it was determined that the optimized architecture for the ANN structure was 5×5×1. The study found that all four models demonstrated exceptional prediction performance: COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP. It is worth noting that the MVO-MLP model exhibited superior accuracy in generating network outputs for predicting measured values compared to the other models. The training data sets showed R2 and RMSE values of (0.07184 and 0.9819), (0.04536 and 0.9928), (0.09194 and 0.9702), and (0.04714 and 0.9923) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively. Similarly, the testing data sets produced R2 and RMSE values of (0.08126 and 0.07218), (0.07218 and 0.9814), (0.10827 and 0.95764), and (0.09886 and 0.96481) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively.