• Title/Summary/Keyword: Data forwarding

Search Result 247, Processing Time 0.027 seconds

Trends on Data Plane Acceleration Technology (데이터 플레인 가속화 기술동향)

  • Choi, K.I.;Lee, B.C.
    • Electronics and Telecommunications Trends
    • /
    • v.30 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • 인터넷 트래픽의 향후 5년간 연평균성장률(CAGR)은 24%(유선 트래픽이 21%, 모바일 트래픽이 68%)로 예상되지만, 인터넷 트래픽을 처리하는 칩셋의 성능 연평균성장률은 14% 정도로 예상되고 있다. 이에 따라, 증가하는 인터넷 트래픽과 이를 처리하는 칩셋의 성능 사이에 격차(Forwarding Gap)가 발생하고 있는 상황이다. 이런 격차를 줄이기 위해 시작된 연구기술이 데이터 플레인 가속화(DPA: Data Plane Acceleration) 기술이다. 본고에서는 데이터 플레인 가속화 기술로 최근 공개 소프트웨어로 발표된 인텔의 DPDK(Data Plane Development Kit)기술과 Linaro의 ODP(Open Data Plane)기술을 중심으로 고속 네트워크 패킷처리를 위한 데이터 플레인 가속화 기술동향을 소개한다.

  • PDF

A Mesh Scheme for Efficient Multicast Service in Mobile Ad-hoc Networks (모바일 Ad-hoc 네트워크에서 효율적인 멀티캐스트 서비스를 지원하기 위한 메쉬구조)

  • Le, The Dung;An, Beong-Ku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.31-39
    • /
    • 2011
  • In this paper, we propose an evenly distributed mesh scheme to support services in mobile ad-hoc networks. Two strategies, the adaptive upgrading of forwarding nodes and the adaptive downgrading of forwarding nodes, are presented in the scheme. Our proposed scheme can support construction of better multicast mesh that can give higher packet delivery ratio with lower duplicate data as well as solve the problem of serious congestion especially when node mobility and data transmission rate are high in mobile ad-hoc networks. The performance evaluation is performed via simulation using OPNET.

Efficient routing in multicast mesh by using forwarding nodes and weighted cost function

  • Vyas, Kapila;Khuteta, Ajay;Chaturvedi, Amit
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5928-5947
    • /
    • 2019
  • Multicast Mesh based Mobile Ad-hoc NETworks (MANETs) provide efficient data transmission in energy restraint areas without a fixed infrastructure. In this paper, the authors present an improved version of protocol SLIMMER developed by them earlier, and name it SLIMMER-SN. Most mesh-based protocols suffer from redundancy; however, the proposed protocol controls redundancy through the concept of forwarding nodes. The proposed protocol uses remaining energy of a node to decide its energy efficiency. For measuring stability, a new metric called Stability of Node (SN) has been introduced which depends on transmission range, node density and node velocity. For data transfer, a weighted cost function selects the most energy efficient nodes / most stable nodes or a weighted combination of both. This makes the node selection criteria more dynamic. The protocol works in two steps: (1) calculating SN and (2) using SN value in the weighted cost function for selection of nodes. The study compared the proposed protocol, with other mesh-based protocols PUMA and SLIMMER, based on packet delivery ratio (PDR), throughput, end-to-end delay and average energy consumption under different simulation conditions. Results clearly demonstrate that SLIMMER-SN outperformed both PUMA and SLIMMER.

An MAC Protocol Design in Minimizing of Data Transmission Delay for Wireless Sensor Networks (센서 네트워크에서 데이타 전송 지연을 최소화하는 MAC 프로토콜의 설계)

  • Kim, Man-Seok;Kim, Sang-Soo;Koh, Kwang-Shin;Cho, Gi-Hwan;Lee, Moon-Ho
    • Journal of Internet Computing and Services
    • /
    • v.8 no.2
    • /
    • pp.43-54
    • /
    • 2007
  • The effective power consumption is the primary issue in a sensor network which consists of the sensor nodes with limited battery power. So, most of the MAC protocols in sensor networks have been designed with the consideration of energy efficiency. Generally, these protocols make use of the listen and sleep mode periodically. However, this approach inevitably causes a long transmission delay on the data forwarding path, which is mainly resulted from the sleep time of the receiver node. This paper deals with a design of DT-MAC(Data Transmission centric MAC) protocol, with minimizes the data transmission delay while it forces each node to consume its energy efficiently. Thus, a node received a packet converts its remained sleep time to the pseudo_listen time, in which the node is able to transmit a packet. With benefit of the pseudo_listen period, the data transmission delay along with the data forwarding path will be shortened as much as it possible. Therefore, DT-MAC protocol is very suitable to the various applications which require a real time sensing data such as disaster and fire alarm.

  • PDF

A Reporting Interval Adaptive, Sensor Control Platform for Energy-saving Data Gathering in Wireless Sensor Networks

  • Choi, Wook;Lee, Yong;Kim, Sang-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.247-268
    • /
    • 2011
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting interval varies according to the type of application. Such considerations require an application-specific, parameter tuning paradigm allowing us to maximize energy conservation prolonging the operational network lifetime. In this paper, we propose a reporting interval adaptive, sensor control platform for energy-saving data gathering in wireless sensor networks. The ultimate goal is to extend the network lifetime by providing sensors with high adaptability to application-dependent or time-varying, reporting interval requirements. The proposed sensor control platform is based upon a two phase clustering (TPC) scheme which constructs two types of links within each cluster - namely, direct link and relay link. The direct links are used for control and time-critical, sensed data forwarding while the relay links are used only for multi-hop data reporting. Sensors opportunistically use the energy-saving relay link depending on the user reporting, interval constraint. We present factors that should be considered in deciding the total number of relay links and how sensors are scheduled for sensed data forwarding within a cluster for a given reporting interval and link quality. Simulation and implementation studies demonstrate that the proposed sensor control platform can help individual sensors save a significant amount of energy in reporting data, particularly in dense sensor networks. Such saving can be realized by the adaptability of the sensor to the reporting interval requirements.

Implementation and Performance Evaluation of Reporting Interval-adaptive Sensor Control Scheme for Energy Efficient Data Gathering (에너지 효율적 센서 데이터 수집을 위한 리포팅 허용 지연시간 적응형 센서 제어 기법 구현 및 성능평가)

  • Shon, Tae-Shik;Choi, Hyo-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.459-464
    • /
    • 2010
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting latency may vary depending on the type of applications, thus requiring application-specific algorithm and protocol design paradigms which help us to maximize energy conservation and thus the network lifetime. In this paper, we implement and evaluate a novel delay-adaptive sensor scheduling scheme for energy-saving data gathering which is based on a two phase clustering (TPC), in wireless sensor networks. The TPC is implemented on sensor Mote hardwares. With the help of TPC implemented, sensors selectively use direct links for control and forwarding time critical sensed data and relay links for data forwarding based on the user delay constraints given. Implementation study shows that TPC helps the sensors to increase a significant amount of energy while collecting sensed data from sensors in a real environment.

Detection of False Data Injection Attacks in Wireless Sensor Networks (무선 센서 네트워크에서 위조 데이터 주입 공격의 탐지)

  • Lee, Hae-Young;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.83-90
    • /
    • 2009
  • Since wireless sensor networks are deployed in open environments, an attacker can physically capture some sensor nodes. Using information of compromised nodes, an attacker can launch false data injection attacks that report nonexistent events. False data can cause false alarms and draining the limited energy resources of the forwarding nodes. In order to detect and discard such false data during the forwarding process, various security solutions have been proposed. But since they are prevention-based solutions that involve additional operations, they would be energy-inefficient if the corresponding attacks are not launched. In this paper, we propose a detection method that can detect false data injection attacks without extra overheads. The proposed method is designed based on the signature of false data injection attacks that has been derived through simulation. The proposed method detects the attacks based on the number of reporting nodes, the correctness of the reports, and the variation in the number of the nodes for each event. We show the proposed method can detect a large portion of attacks through simulation.

Q+R Tree based Pub-Sub System for Mobile Users (모바일 사용자를 위한 Q+R 트리 기반 퍼브-서브 시스템)

  • Lee, Myung-Guk;Kim, Kyungbaek
    • Smart Media Journal
    • /
    • v.4 no.3
    • /
    • pp.9-15
    • /
    • 2015
  • A pub(lish)/sub(scribe) system is a data forwarding system which forwards only interesting data among the whole published data, which is related to the subscriptions registered by end users. Classical pub/sub systems are realized by constructing a network of brokers which are responsible for storing or forwarding data. Along with the substantial increase of the population mobile users, it is required that the pub/sub system handles the subscriptions of user locations which changes continuously and frequently. In this paper, a new broker network based pub/sub system which efficiently handles the frequent changes of subscriptions related to user locations is proposed. In consideration of moving patterns of users and geographical property, the proposed pub/sub system categorize the entire data space into Slow Moving Region and Normal Moving Region, and manages the brokers which are responsible for these regions by using Q+R tree in order to handle user requests more efficiently. Through the extensive simulation, it is presented that the proposed Q+R tree based pub/sub system can reduce unnecessary needs of brokers and network traffic and can support the dynamic subscription related to user location.

A High-speed IP Address Lookup Architecture using Adaptive Multiple Hashing and Prefix Grouping (적응적인 복수 해슁과 프리픽스그룹화를 이용한 고속 IP 주소 검색 구조)

  • Park Hyun-Tae;Moon Byung-In;Kang Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.137-146
    • /
    • 2006
  • IP address lookup has become a major bottleneck of packet forwarding and a critical issue for high-speed networking techniques in routers. In this paper, we propose an efficient high-speed IP address lookup scheme using adaptive multiple hashing and prefix grouping. According to our analysis results based on routing data distributions, we grouped prefix lengths and selected the number of hash functions in each group adaptively. As a result, we can reduce collisions caused by hashing. Accordingly, a forwarding table of our scheme has good memory efficiency, and thus is organized with the proper number of memory modules. Also, the proposed scheme has the fast building and searching mechanisms to develop the forwarding table only during a single memory access.

Design of UIGRP(Urban Intersection based Geographic Routing Protocol) considering the moving direction and density of vehicles (차량 이동 방향과 밀집도를 고려한 UIGRP(Urban Intersection based Geographic Routing Protocol) 설계)

  • Lee, Byung-Kwan;Jeong, Eun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.703-712
    • /
    • 2015
  • This paper proposes the UIGRP, which can tackle the problem of the network disconnection and packet transmission delay caused by turning vehicles frequently in an urban intersection. The UIGRP was designed as follows. First, it calculates the direction of vehicles using the moving direction of vehicles and the location of a destination. Second, it makes the RSU measure the density of an urban intersection. Third, the TGF Algorithm in the UIGRP decides the data transmission paths by setting as an intermediate node, not only the vehicle that is moving in the direction where a destination node is located, but also the node that has the highest density. The TGF algorithm using a moving direction and density minimizes or removes the occurrence of local maximum problems that the existing Greedy Forwarding algorithm has. Therefore, the simulation result shows that UIGRP decreases the occurrence of local maximum problems by 3 and 1 times, and the packet transmission time by 6.12 and 2.04(ms), and increases the success rate of packet transmission by 15 and 3%, compared to the existing GPSR and GPUR.