• Title/Summary/Keyword: Data classification

Search Result 8,102, Processing Time 0.037 seconds

Comparison Study for Data Fusion and Clustering Classification Performances (다구찌 디자인을 이용한 데이터 퓨전 및 군집분석 분류 성능 비교)

  • 신형원;손소영
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.601-604
    • /
    • 2000
  • In this paper, we compare the classification performance of both data fusion and clustering algorithms (Data Bagging, Variable Selection Bagging, Parameter Combining, Clustering) to logistic regression in consideration of various characteristics of input data. Four factors used to simulate the logistic model are (1) correlation among input variables (2) variance of observation (3) training data size and (4) input-output function. Since the relationship between input & output is not typically known, we use Taguchi design to improve the practicality of our study results by letting it as a noise factor. Experimental study results indicate the following: Clustering based logistic regression turns out to provide the highest classification accuracy when input variables are weakly correlated and the variance of data is high. When there is high correlation among input variables, variable bagging performs better than logistic regression. When there is strong correlation among input variables and high variance between observations, bagging appears to be marginally better than logistic regression but was not significant.

  • PDF

Incremental Multi-classification by Least Squares Support Vector Machine

  • Oh, Kwang-Sik;Shim, Joo-Yong;Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.965-974
    • /
    • 2003
  • In this paper we propose an incremental classification of multi-class data set by LS-SVM. By encoding the output variable in the training data set appropriately, we obtain a new specific output vectors for the training data sets. Then, online LS-SVM is applied on each newly encoded output vectors. Proposed method will enable the computation cost to be reduced and the training to be performed incrementally. With the incremental formulation of an inverse matrix, the current information and new input data are used for building another new inverse matrix for the estimation of the optimal bias and lagrange multipliers. Computational difficulties of large scale matrix inversion can be avoided. Performance of proposed method are shown via numerical studies and compared with artificial neural network.

  • PDF

Classification of Class-Imbalanced Data: Effect of Over-sampling and Under-sampling of Training Data (계급불균형자료의 분류: 훈련표본 구성방법에 따른 효과)

  • 김지현;정종빈
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.445-457
    • /
    • 2004
  • Given class-imbalanced data in two-class classification problem, we often do over-sampling and/or under-sampling of training data to make it balanced. We investigate the validity of such practice. Also we study the effect of such sampling practice on boosting of classification trees. Through experiments on twelve real datasets it is observed that keeping the natural distribution of training data is the best way if you plan to apply boosting methods to class-imbalanced data.

A Data Mining Procedure for Unbalanced Binary Classification (불균형 이분 데이터 분류분석을 위한 데이터마이닝 절차)

  • Jung, Han-Na;Lee, Jeong-Hwa;Jun, Chi-Hyuck
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.1
    • /
    • pp.13-21
    • /
    • 2010
  • The prediction of contract cancellation of customers is essential in insurance companies but it is a difficult problem because the customer database is large and the target or cancelled customers are a small proportion of the database. This paper proposes a new data mining approach to the binary classification by handling a large-scale unbalanced data. Over-sampling, clustering, regularized logistic regression and boosting are also incorporated in the proposed approach. The proposed approach was applied to a real data set in the area of insurance and the results were compared with some other classification techniques.

A Study on Characteristics of Maintenance and Standarization Plan Concerned with DB of Retainging Wall (옹벽 구조물의 표준 DB화 방안 및 유지관리 특성 연구)

  • Lee, Song;Shim, Min-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.129-140
    • /
    • 2000
  • Retaining wall is a constructed structure in order to construct road, rail, building for effective use and obtainments of the limited ground. Recently, many kinds of research have been actively developed for a standardization and information to the maintenance and management of bridge, tunnel, road. With the works of database construction of that, many kinds of data with respect to statistics is cumulated. Database work of retaining wall is wholly lacking and lagged behind in the works of database construction. This paper suggests classification system on inspection data. On the basis of that, code work with classification system was practised and DB program of inspection data of retaining wall was developed. And input work for a data of maintenance and management was practised. The purpose of this paper is to suggest a kind of statistics data and investigate a characteristics of inspection using statistic data on retaining wall.

  • PDF

A GENETIC ALGORITHM BASED FEATURE EXTRACTION TECHNIQUE FOR HYPERSPECTRAL IMAGERY

  • Ryu Byong Tae;Kim Choon-Woo;Kim Hakil;Lee Kyu Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.209-212
    • /
    • 2005
  • Hyperspectral data consists of more than 200 spectral bands that are highly correlated. In order to utilize hyperspectral data for classification, dimensional reduction or feature extraction is desired. By applying feature extraction, computational complexity of classification can be reduced and classification accuracy may be improved. In this paper, a genetic algorithm based feature extraction technique is proposed. Measure from discriminant analysis is utilized as optimization criterion. A subset of spectral bands is selected by genetic algorithm. Dimension of feature space is further reduced by linear transformation. Feasibility of the proposed technique is evaluated with AVIRIS data.

  • PDF

On Useful Principal Component Features for EEG Classification (뇌파 분류에 유용한 주성분 특징)

  • Park, Sungcheol;Lee, Hyekyoung;Park, Seungjin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.178-180
    • /
    • 2003
  • EEG-based brain computer interface(BCI) provides a new communication channel between human brain and computer. EEG data is a multivariate time series so that hidden Markov model (HMM) might be a good choice for classification. However EEG is very noisy data and contains artifacts, so useful features mr expected to improve the performance of HMM. In this paper we addresses the usefulness of principal component features with Hidden Markov model (HHM). We show that some selected principal component features can suppress small noises and artifacts, hence improves classification performance. Experimental study for the classification of EEG data during imagination of a left, right up or down hand movement confirms the validity of our proposed method.

  • PDF

Impact of Instance Selection on kNN-Based Text Categorization

  • Barigou, Fatiha
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.418-434
    • /
    • 2018
  • With the increasing use of the Internet and electronic documents, automatic text categorization becomes imperative. Several machine learning algorithms have been proposed for text categorization. The k-nearest neighbor algorithm (kNN) is known to be one of the best state of the art classifiers when used for text categorization. However, kNN suffers from limitations such as high computation when classifying new instances. Instance selection techniques have emerged as highly competitive methods to improve kNN through data reduction. However previous works have evaluated those approaches only on structured datasets. In addition, their performance has not been examined over the text categorization domain where the dimensionality and size of the dataset is very high. Motivated by these observations, this paper investigates and analyzes the impact of instance selection on kNN-based text categorization in terms of various aspects such as classification accuracy, classification efficiency, and data reduction.

A Design of Cassifier Using Mudular Neural Networks with Unsupervised Learning (비지도 학습 방법을 적용한 모듈화 신경망 기반의 패턴 분류기 설계)

  • 최종원;오경환
    • Korean Journal of Cognitive Science
    • /
    • v.10 no.1
    • /
    • pp.13-24
    • /
    • 1999
  • In this paper, we propose a classifier based on modular networks using an unsupervised learning method. The structure of each module is designed through stochastic analysis of input data and each module classifier data independently. The result of independent classification of each module and a measure of the nearest distance are integrated during the final data classification phase to allow more precise c classification. Computation time is decreased by deleting modules that have been classified to be incorrect during the final classification phase. Using this method. a neural network sharing the best performance was implemented without considering. lots of of variables which can affect the performance of the neural network.

  • PDF

A Method for Short Text Classification using SNS Feature Information based on Markov Logic Networks (SNS 특징정보를 활용한 마르코프 논리 네트워크 기반의 단문 텍스트 분류 방법)

  • Lee, Eunji;Kim, Pankoo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.1065-1072
    • /
    • 2017
  • As smart devices and social network services (SNSs) become increasingly pervasive, individuals produce large amounts of data in real time. Accordingly, studies on unstructured data analysis are actively being conducted to solve the resultant problem of information overload and to facilitate effective data processing. Many such studies are conducted for filtering inappropriate information. In this paper, a feature-weighting method considering SNS-message features is proposed for the classification of short text messages generated on SNSs, using Markov logic networks for category inference. The performance of the proposed method is verified through a comparison with an existing frequency-based classification methods.