Uncertainty in housing price fluctuation has great impact on the overall economy due to importance of housing market as both place of residence and investment target. Therefore, estimating housing market condition is a highly important task in terms of setting national policy. Primary indicator of the housing market is a ratio between rent and transaction price of housing. The research explores dynamic relationships between Rent-Transaction price ratio, housing transaction price and jeonse rental price, using Vector Autoregressive Model, in order to demonstrate significance of shifting rent-transaction price that is subject to changes in housing transaction and housing rental market. The research applied housing transaction price index and housing rental price index as an indicator to measure transaction and rental price of housing. The price index and data for price ratio was derived from statistical data of the Kookmin Bank. The time-series data contains monthly data ranging between January 1999 and November 2009; the data was log transformed to convert to level variable. The analysis result suggests that the rising ratio between rent-transaction price of housing should be interpreted as a precursor for rise of housing transaction price, rather than judging as a mere indicator of a current trend.
대용량의 데이터들로부터 사용자가 인하는 데이터를 찾기 위하여 많은 데이터 마이닝 기술들이 연구되어 실제 응용프로그램에서 많이 적용되고 있다. 이러한 데이터 마이닝 기술들은 시계열 데이터를 이용하는 경우보다 트랜잭션 데이터를 이용하여 유용한 정보를 찾는 경우에 초점이 맞춰져 있다. 본 논문에서는 시계열 데이터를 트랜잭션 데이터로 변환하는 접근방법을 소개한다. 가상 트랜잭션은 서로 상대적으로 근접한 시간에 발생하는 이벤트의 집합이라고 정의하며, 가상 트랜잭션 생성기는 가상 트랜잭션을 생성시 시간윈도우와 이벤트 윈도우 방법을 사용한다. 본 논문의 접근 방법을 사용하여 기존의 트랜잭션 데이터를 이용하는 많은 데이터 마이닝 알고리즘들을 수정 없이 시계열 데이터에 적용하여 유용한 정보를 찾을 수 있다.
As new applications of cloud data management system (CDMS) such as online games, cooperation edit, social network, and so on, are increasing, transaction processing capabilities for CDMS are required. Several transaction processing methods for cloud data management system (CDMS) have been proposed. However, existing transaction processing methods have some problems. Some of them provide limited transaction processing capabilities. Some of them are hard to be integrated with existing CDMSs. In this paper, we proposed a new concurrency control method to support transaction processing capability for CDMS to solve these problems. The proposed method was designed and implemented based on Spark, an in-memory distributed processing framework. It uses RDD (Resilient Distributed Dataset) model to provide fault tolerant to data in the main memory. In our proposed method, database stored in CDMS is loaded to main memory managed by Spark. The loaded data set is then transformed to RDD. In addition, we proposed a multi-version concurrency control method through immutable characteristics of RDD. Finally, we performed experiments to show the feasibility of the proposed method.
Recently, transaction data is accumulated everywhere very rapidly. Association analysis methods are usually applied to analyze transaction data, but the methods have several problems. For example, these methods can only consider one-way relations among items and cannot reflect domain knowledge into analysis process. In order to overcome defect of association analysis methods, we suggest a transaction data analysis method based on probabilistic graphical model (PGM) in this study. The method we suggest has several advantages as compared with association analysis methods. For example, this method has a high flexibility, and can give a solution to various probability problems regarding the transaction data with relationships among items.
데이터베이스의 발달은 데이터 보안에 대한 새로운 인식과 필요성으로 정보의 보호와 데이터베이스의 효율적인 관리 및 데이터에 대한 연산들로 구성된 트랜잭션 관리가 필요로 하다. 사용자가 데이터에 접근할 때 사용자의 보안인가와 데이터의 보안 등급에 의해서 트랜잭션 동시성이 제어된다. 그래서 기존의 보안 알고리즘은 비밀 경로를 제거하는 부분에 초점을 맞추었기 때문에 하위 등급 트랜잭션에 의해 상위등급 트랜잭션의 수행이 반복적으로 지연되는 상위 등급 트랜잭션의 직렬성을 만족시키지 못하는 문제가 발생하였다. 따라서 본 논문에서는 트랜잭션의 직렬성 위배 문제를 방지하여 상위 트랜잭션 재수행 및 지연에 의한 자원 낭비를 막고 동시성 제어의 효율을 높이는 알고리즘을 제시한다.
As interest in big data has increased recently, NoSQL, a solution for storing and processing big data, is getting attention. NoSQL supports high speed, high availability, and high scalability, but is limited in areas where data integrity is important because it does not support multiple row transactions. To overcome these drawbacks, many studies are underway to support multiple row transactions in NoSQL. However, existing studies have a disadvantage that the number of transactions that can be processed per unit of time is low and performance is degraded. Therefore, in this paper, we design and implement a multi-row transaction system for data integrity in big data environment based on HBase, a column-based NoSQL which is widely used recently. The multi-row transaction system efficiently performs multi-row transactions by adding columns to manage transaction information for every user table. In addition, it controls the execution, collision, and recovery of multiple row transactions through the transaction manager, and it communicates with HBase through the communication manager so that it can exchange information necessary for multiple row transactions. Finally, we performed a comparative performance evaluation with HAcid and Haeinsa, and verified the superiority of the multirow transaction system developed in this paper.
모바일 뱅킹을 이용한 거래 증가세가 지속되면서 모바일 금융 보안 위협 또한 증가하고 있다. 모바일 뱅킹은 금융사가 제작한 전용 앱을 통해 금융거래를 수행하는 방식으로 인터넷 뱅킹에 준하는 대부분의 서비스를 제공하고 있다. 모바일 뱅킹 전용 앱에서 저장하고 있는 신용카드 번호와 같은 개인정보는 해커의 악의적인 공격이나 모바일 단말 분실로 인해 2차적인 공격에 이용될 수 있다. 따라서 본 논문에서는 이러한 개인정보 유출에 의한 모바일 금융사고 위협에 대응하기 위해 모바일 단말에서 뱅킹 서비스 이용시 사용자의 입력 패턴과 거래 패턴을 이용하여 올바른 사용자에 의한 거래 시도인지 여부를 판단할 수 있는 이상치 탐지 방법을 제안한다. 사용자의 입력 패턴과 거래 패턴 데이터에는 특정 사용자를 식별할 수 있는 정보들이 포함되어 있으며, 따라서 이를 적절히 이용할 경우 올바른 사용자에 의한 금융 거래와 비정상 거래를 구분하기 위한 자료로 사용할 수 있다. 본 논문에서는 실험을 위해 스마트 폰에서 직접 사용자 입력 패턴 정보를 수집하였고, 국내 모 금융사에서 이상치 탐지에 사용하는 실험 데이터를 획득하여 거래 패턴 정보로 활용하였다. 수집된 정보를 바탕으로 입력 패턴 및 거래 패턴 기반의 탐지 실험을 진행한 결과, 효율적으로 이상 거래를 탐지할 수 있음을 확인하였다.
정보기술의 빠른 진화, 빅데이터의 등장, 분석기법의 고도화 등으로 인해 다량의 데이터로부터 의미있는 정보를 추출하는 데이터마이닝을 다양한 영역에 활용하고자 하는 시도들이 활발히 진행되고 있다. 그 중의 한 분야가 농산물 유통영역인데, 농산물에 대한 지속적인 수요 증가와 전자경매의 활성화 등으로 수도권 농산물 도매시장에서만도 연간 수천만건 이상의 거래가 이루어 진다. 그러나 급속한 거래량 증가와 더불어 과거로부터 관행적으로 이루어지고 있는 부정거래도 함께 증가하고 있는데 거래참가자들 사이의 결탁에 의해 발생하는 농산물 도매시장의 부정거래는 점차 지능화되는 추세이며, 이들을 감지하고 적발하기가 매우 어려운 실정이다. 이로 인해 농산물 유통환경의 공정거래 질서는 침해되고 시장에 대한 신뢰는 훼손되곤 한다. 따라서 거래투명성을 제고하고 유통비리를 구조적으로 개선하기 위한 과학적이고 자동화된 부정탐지시스템의 필요성이 어느 때보다도 절실히 요구되는 상황이다. 본 연구에서는 데이터마이닝의 의사결정나무를 이용하여 실제 발생하지 않은 거래를 실물 없이 거래한 것처럼 조작하여 대금을 정산하는 행위인 허위거래를 탐지하는 모형을 제시하였다. 이를 위해 실제 농산물 도매시장의 데이터를 수집하였고, 데이터의 정제 및 표준화 등의 선행작업을 수행하였다. 또한 변수 간의 상관관계 및 분포도 분석 등을 통해 데이터의 특성을 파악한 후 예측모형을 구축하여 허위거래와 정상거래를 분류하는 패턴을 도출하였으며, 최종적으로 시험용 데이터를 이용하여 모형을 평가하는 단계를 거쳐 결과의 적합성을 확인하였다. 향후 데이터마이닝을 이용한 부정탐지 모형을 허위거래뿐만 아니라 낙찰부정, 경매조작 등과 같이 다양화되는 부정거래에 적용하게 되면 보다 지대한 효과를 거둘 수 있으리라 사료된다.
Recently, mobile phones have been recognized as the most convenient type of mobile payment device. However, they have some security problems; therefore, mobile devices cannot be used for unauthorized transactions using anonymous data by unauthenticated users in a cloud environment. This paper suggests a mobile payment system that uses a certificate mode in which a user receives a paperless receipt of a product purchase in a cloud environment. To address mobile payment system security, we propose the transaction certificate mode (TCM), which supports mutual authentication and key management for transaction parties. TCM provides a software token, the transaction certificate token (TCT), which interacts with a cloud self-proxy server (CSPS). The CSPS shares key management with the TCT and provides simple data authentication without complex encryption. The proposed self-creating protocol supports TCM, which can interactively communicate with the transaction parties without accessing a user's personal information. Therefore, the system can support verification for anonymous data and transaction parties and provides user-based mobile payments with a paperless receipt.
Although the internet is useful for transferring information, Internet auction environments make fraud more attractive to offenders because the chance of detection and punishment are decreased. One of fraud is phantom transaction which is a colluding transaction by the buyer and seller to commit illegal discounting of credit card. They pretend to fulfill the transaction paid by credit card, without actual selling products, and the seller receives cash from credit card corporations. Then seller lends it out buyer with quite high interest rate whose credit score is so bad that he cannot borrow money from anywhere. The purpose of this study is to empirically investigate the factors to detect of the phantom transaction in online auction. Based up on the studies that explored behaviors of buyers and sellers in online auction, bidding numbers, bid increments, sellers' credit, auction length, and starting bids were suggested as independent variables. We developed an Internet-based data collection software agent and collect data on transactions of notebook computers each of which winning bid was over 1,000,000 won. Data analysis with logistic regression model revealed that starting bids, sellers' credit, and auction length were significant in detecting the phantom transaction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.