• Title/Summary/Keyword: Data Similarity

검색결과 2,098건 처리시간 0.04초

퍼지모델을 이용한 유사성 기반의 동적 클러스터링 (Similarity-based Dynamic Clustering Using Radar Reflectivity Data)

  • 이한수;김수대;김용현;김성신
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.219-222
    • /
    • 2011
  • 어떠한 객체의 움직임을 추적하거나 상태변화를 추정하기 위해서 사용하는 방법으로는 칼만필터, 파티클 필터, 동적 클러스터링 등이 있다. 이 중 동적클러스터링 기법은 여러 프레임에 걸쳐 클러스터를 추적하고 변화 경향을 분석하는데 유용한 방법이다. 본 논문에서는 유사성 기반의 동적 클러스터링 방법을 제안하고 시뮬레이션 하여 검증하였다. 제안한 동적 클러스터링 방법은 연속된 각 프레임에 대해 유사한 특성을 가지는 클러스터를 인접한 프레임에 걸쳐 동일한 클러스터로 판단하는 방법이다. 각 정지 프레임에서의 클러스터의 특성을 이용하여 프레임의 변화를 분석하고 유사성이 높은 클러스터들을 동일 클러스터로 지정하였다. 유사성 판단 방법은 Mamdani방식의 퍼지 모델을 제안하였다. 제안한 알고리즘은 시간에 대해 연속성을 가진 레이더 반사도 데이터에 적용하였고 시간의 흐름에 따른 클러스터의 변화를 관측할 수 있었다.

  • PDF

Similarity Measure based on Utilization of Rating Distributions for Data Sparsity Problem in Collaborative Filtering

  • Lee, Soojung
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권12호
    • /
    • pp.203-210
    • /
    • 2020
  • 메모리 기반의 협력 필터링은 추천 시스템의 대표적인 타입이지만 데이터 희소성이라는 본질적인 문제를 갖고 있다. 이 문제를 해결하기 위해 많은 연구 업적들이 이루어졌으나, 보다 체계적인 접근 방법은 여전히 요구된다. 본 연구는 사용자 간의 유사도를 산출하기 위하여 항목들에 대한 사용자 평가치 분포를 활용한다. 따라서 제안 방법은 사용자의 모든 평가치를 이용하므로, 공통 항목에 대한 평가치만을 이용하는 기존 방법들과 대비된다. 더욱이, 각 항목에 대한 다른 사용자들의 평가치들을 유사도 계산에 반영함으로써 항목 평가치의 광역적인 관점을 취한다. 제안 방법의 성능은 실험을 통하여 평가하였고, 연관된 다른 방법들과 비교하였다. 그 결과, 제안 방법은 예측과 순위 정확도 측면에서 우수한 성능을 보였다. 이러한 예측 정확도의 향상은 전통적인 유사도 척도에 비해 최근의 방법으로 달성한 것보다 최고 2.6배 더 높다.

딥러닝을 활용한 전시 정원 디자인 유사성 인지 모형 연구 (Development of Deep Recognition of Similarity in Show Garden Design Based on Deep Learning)

  • 조우윤;권진욱
    • 한국조경학회지
    • /
    • 제52권2호
    • /
    • pp.96-109
    • /
    • 2024
  • 본 연구는 딥러닝 모델 중 VGG-16 및 ResNet50 모델을 활용하여 전시 정원의 유사성 평가 방법을 제시하는 것에 목적이 있다. VGG-16과 ResNet50 모델을 기반으로 전시 정원 유사성 판단을 위한 모형을 개발하였고, 이를 DRG(deep recognition of similarity in show garden design)모형이라 한다. 평가를 위한 방법으로 GAP와 피어슨 상관계수를 활용한 알고리즘을 사용하여 모형을 구축하고 1순위(Top1), 3순위(Top3), 5순위(Top5)에서 원본 이미지와 유사한 이미지를 도출하는 총 개수 비교로 유사성의 정확도를 분석하였다. DRG 모형에 활용된 이미지 데이터는 국외 쇼몽가든페스티벌 전시 정원 총 278개 작품과 국내 정원박람회인 서울정원박람회 27개 작품 및 코리아가든쇼 전시정원 이미지 17개 작품이다. DRG모형을 활용하여 동일 집단과 타 집단간의 이미지 분석을 진행하였고, 이를 기반으로 전시 정원 유사성의 가이드라인을 제시하였다. 첫째, 전체 이미지 유사성 분석은 ResNet50 모델을 기반으로 하여 데이터 증강 기법을 적용하는 것이 유사성 도출에 적합하였다. 둘째, 내부 구조와 외곽형태에 중점을 둔 이미지 분석에서는 형태에 집중하기 위한 일정한 크기의 필터(16cm × 16cm)를 적용하여 이미지를 생성하고 VGG-16 모델을 적용하여 유사성을 비교하는 방법이 효과적임을 알 수 있었다. 이때, 이미지 크기는 448 × 448 픽셀이 효과적이며, 유채색의 원본 이미지를 기본으로 설정함을 제안하였다. 이러한 연구 결과를 토대로 전시 정원 유사성 판단에 대한 정량적 방법을 제안하고, 향후 다양한 분야와의 융합 연구를 통해 정원 문화의 지속적인 발전에 기여할 것으로 기대한다.

부분적 주변 비율에 의한 확률적 흥미도 측도 기반 유사성 측도의 상한 및 하한의 설정 (Bounds of PIM-based similarity measures with partially marginal proportion)

  • 박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권4호
    • /
    • pp.857-864
    • /
    • 2015
  • 데이터 마이닝은 다양한 형태의 방대한 데이터 집합으로부터 보이지 않는 지식이나 새로운 법칙을 발견한 후, 이를 바탕으로 의사결정 등을 위한 정보로 활용하고자 하는 것이다. 데이터 마이닝 기법중의 하나인 군집 분석은 거리 또는 유사성 측도를 이용하여 집단을 분류하고, 구분된 각 집단의 특성을 파악하기 위한 기법이다. 본 논문에서는 주변 확률이 일부 포함된 확률적 흥미도 측도 기반의 유사성 측도들인 Peirce I, Peirce II, Cole I, Cole II, 그리고 이들을 응용한 Park I 및 Park II에 대한 대소 관계를 수식의 증명뿐만 아니라 예제 데이터에 의해서도 규명하였다. 그 결과, Cole I과 Cole II의 측도를 동시에 고려한 Loevinger 측도가 기존의 측도들 중에서는 상한이 되나 Park I 및 Park II를 함께 고려했을 경우에는 동시발생비율, 동시 비발생비율, 그리고 두 가지 형태의 불일치비율의 크기에 따라 변한다는 사실을 확인하였다.

유사도 검색을 위한 데이터 재배열을 이용한 공간 효율적인 역 색인 기법 (A Space-Efficient Inverted Index Technique using Data Rearrangement for String Similarity Searches)

  • 임마누;김종익
    • 정보과학회 논문지
    • /
    • 제42권10호
    • /
    • pp.1247-1253
    • /
    • 2015
  • 유사도 검색에서는 효율적으로 유사성을 만족하는 문자열을 찾기 위해서 데이터에 대한 역 색인을 구축하여 이용한다. 일반적으로 기존의 기법들은 빠른 응답속도의 질의처리를 위해서 역 색인을 메모리에 상주시킨다. 하지만 구축된 역 색인은 그 크기가 매우 크다는 문제점을 가지고 있다. 따라서 데이터의 크기가 매우 큰 경우나 자원이 제약적인 환경에서는 역 색인을 이용한 질의처리가 불가능할 수 있다. 본 논문에서는 동일한 q-그램을 포함하는 문자열들이 서로 인접한 위치가 되도록 재배치시킨 후 해당 문자열들을 범위로 표현한다. 실험을 통하여 질의처리의 성능을 희생하지 않으면서도 색인의 크기가 줄어드는 것을 보인다.

이분형 예측 유사성 측도의 연관성 평가 기준 적용 방안 (The application for predictive similarity measures of binary data in association rule mining)

  • 박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권3호
    • /
    • pp.495-503
    • /
    • 2011
  • 데이터 마이닝에서의 연관성 규칙은 방대한 양의 데이터베이스에 내재되어 있는 항목들 간의 관련성을 수치화 하는 방법이다. 의미 있는 연관성 규칙을 탐사하기 위한 가장 기본적인 연관성 규칙 평가 기준에는 지지도, 신뢰도, 향상도 등이 있다. 이들 중에서 향상도는 그 값에 의해 양의 연관성이 있는지 아니면 음의 연관성이 있는지, 즉 연관성의 방향을 알 수 있는 반면에 지지도와 신뢰도는 그 방향을 알 수가 없다. 이를 위해 순수 신뢰도와 기여 순수 신뢰도가 제안되었으나 이들 또한 단점을 안고 있다. 본 논문에서는 기존의 여러 형태의 신뢰도가 가지고 있는 문제점을 해결하기 위해 군집분석이나 다차원 분석에서 활용되고 있는 이분형 예측 유사성 측도 중에서 -1과 1 사이의 값을 가지는 Yule의 Y 및 Q 측도를 연관성 평가 기준으로 제안하였다. 또한 기존의 순수 신뢰도 및 기여 순수 신뢰도의 문제점을 파악한 후, 예제를 통하여 이분형 예측 유사성 측도의 유용성에 관해 알아보았다. 그 결과, 본 논문에서 고려한 유사성 측도들은 기존의 측도들이 가지고 있는 문제점을 해결할 수 있어서 본 논문에서 제안한 이분형 예측 유사성 측도가 연관성 평가 기준으로 활용할 수 있다는 사실을 확인하였다.

개체 중의성 해소를 위한 사용자 유사도 기반의 트윗 개체 링킹 기법 (Tweet Entity Linking Method based on User Similarity for Entity Disambiguation)

  • 김서현;서영덕;백두권
    • 정보과학회 논문지
    • /
    • 제43권9호
    • /
    • pp.1043-1051
    • /
    • 2016
  • 트위터 문서는 웹 문서에 비해 길이가 짧기 때문에 웹 기반의 개체 링킹 기법을 그대로 적용시킬 수 없어 사용자 정보나 집단의 정보를 활용하는 방법들이 시도되고 있다. 하지만, 트윗의 개수가 충분하지 않은 사용자의 경우 데이터 희소성 문제가 여전히 발생하고 관련이 없는 집단의 정보를 사용할 경우 링킹의 결과에 악영향을 미칠 수 있다. 본 논문에서는 기존 연구의 문제를 해결하기 위해 단일 트윗 내의 의미 관련도 뿐만 아니라 사용자의 트윗 집합과 다른 사용자들의 트윗 집합까지 고려하여 데이터 희소성을 해결하고, 관련성이 높은 사용자들의 트윗 정보에 가중치를 주어 트윗 개체 링킹의 성능을 높이고자 한다. 실제 트위터 데이터를 활용한 실험을 통해 제안하는 트윗 개체 링킹 기법이 기존의 기법에 비해 높은 성능을 가지며, 유사도가 높은 사용자의 정보를 사용하는 것이 트윗 개체 링킹에서 데이터 희소성 해결과 링킹 정확도 향상에 연관성이 있음을 보였다.

On the Categorical Variable Clustering

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • 제7권2호
    • /
    • pp.219-226
    • /
    • 1996
  • Basic objective in cluster analysis is to discover natural groupings of items or variables. In general, variable clustering was conducted based on some similarity measures between variables which have binary characteristics. We propose a variable clustering method when variables have more categories ordered in some sense. We also consider some measures of association as a similarity between variables. Numerical example is included.

  • PDF

태그를 이용한 웹 페이지간의 유사도 측정 방법 (Measuring Web Page Similarity using Tags)

  • 강상욱;이기용;김현규;김명호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제37권2호
    • /
    • pp.104-112
    • /
    • 2010
  • 소셜 북마킹(social bookmarking)은 현재 웹에서 가장 활발한 트렌드 중의 하나이다. 소셜 북마크 시스템을 통해 사용자들은 원하는 웹 페이지에 그의 주제 또는 내용을 나타내는 태그(tag)들을 부착할 수 있다. 지금까지의 연구들은 주로 이러한 정보를 웹 검색을 향상시키는 데 사용해왔다. 본 논문에서는 웹 페이지에 부착된 태그들을 사용하여 두 웹 페이지 간의 의미적 유사도를 측정하는 방법을 제안한다.웹 페이지는 다양한 종류의 멀티미디어 데이터로 구성되어 있기 때문에, 웹 페이지 내부에 포함된 데이터를 사용하여 웹 페이지 간의 유사도를 측정하는 것은 매우 어려운 일이다. 하지만 사용자들에 의해 웹 페이지에 부착된 태그들을 사용하면 웹 페이지 간의 유사도는 매우 효과적으로 측정될 수 있다. 본 논문에서는 WSET (Web Page Similarity Based on Entire Tags)라 하는, 태그에 기반하여 웹 페이지 간의 유사도를 측정하는 새로운 방법을 제안한다. 실험 결과는 제안하는 방법이 기존 방법에 비해 더 좋은 결과를 나타냄을 보였다.

Effect of Input Data Video Interval and Input Data Image Similarity on Learning Accuracy in 3D-CNN

  • Kim, Heeil;Chung, Yeongjee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.208-217
    • /
    • 2021
  • 3D-CNN is one of the deep learning techniques for learning time series data. However, these three-dimensional learning can generate many parameters, requiring high performance or having a significant impact on learning speed. We will use these 3D-CNNs to learn hand gesture and find the parameters that showed the highest accuracy, and then analyze how the accuracy of 3D-CNN varies through input data changes without any structural changes in 3D-CNN. First, choose the interval of the input data. This adjusts the ratio of the stop interval to the gesture interval. Secondly, the corresponding interframe mean value is obtained by measuring and normalizing the similarity of images through interclass 2D cross correlation analysis. This experiment demonstrates that changes in input data affect learning accuracy without structural changes in 3D-CNN. In this paper, we proposed two methods for changing input data. Experimental results show that input data can affect the accuracy of the model.