• Title/Summary/Keyword: Data Sharing Scheme

Search Result 183, Processing Time 0.02 seconds

A Study on Predictive Traffic Control Algorithms for ABR Services (ABR 서비스를 위한 트래픽 예측 제어 알고리즘 연구)

  • 오창윤;장봉석
    • Journal of Internet Computing and Services
    • /
    • v.1 no.2
    • /
    • pp.29-37
    • /
    • 2000
  • Asynchronous transfer mode is flexible to support multimedia communication services using asynchronous time-sharing and statistical multimedia techniques to the existing data communication area, ATM ABR service controls network traffic using feedback information on the network congestion situation in order to guarantee the demanded service qualities and the available cell rates, In this paper we apply the control method using queue length prediction to the formation of feedback information for more efficient ABR traffic control. If backward node receive the longer delayed feedback information on the impending congestion, the switch can be already congested from the uncontrolled arriving traffic and the fluctuation of queue length can be inefficiently high in the continuing time intervals, The feedback control method proposed in this paper predicts the queue length in the switch using the slope of queue length prediction function and queue length changes in time-series, The predicted congestion information is backward to the node, NLMS and neural network are used as the predictive control functions, and they are compared from performance on the queue length prediction. Simulation results show the efficiency of the proposed method compared to the feedback control method without the prediction, Therefore, we conclude that the efficient congestion and stability of the queue length controls are possible using the prediction scheme that can resolve the problems caused from the longer delays of the feedback information.

  • PDF

A Tactical Internet Geocasting Protocol for Efficient Message Delivery (효율적인 메시지 전달을 위한 전술인터넷 지오캐스팅 프로토콜)

  • Yoon, Sun-Joong;Ko, Young-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1050-1061
    • /
    • 2009
  • The Tactical Internet(TI) managed by Infantry Brigades is used for the purpose of sharing information of Command Control and Situation Awareness. When there are more than two destinations to transmit data in the TI system, a multicasting is utilized based on pre-defined multicast groups. However even in the case when a source node needs to send some messages like weathercast and attack alarm etc to only a part of Battalion or Brigades in a specific geographical region (destination region), the current TI multicasting protocol is designed to transmit the messages to the pre-defined group or all of the Battalion/Brigade nodes, resulting in inefficiency in terms of end-to-end delay and overhead. In this paper, we propose more efficient protocol for such cases, named as "Tactical Internet Geocasting (TIG)". The proposed scheme firstly checks whether the destination region belongs to one Battalion region or more than two Battalion regions using location information, and then performs a greedy forwarding from the source node to the destination region, followed by a local flooding inside of the destination region. With performance analysis and simulations using NS-2, TIG is compared to the current TI multicasting protocol (i.e., Simplified MDP) and the LBM (Location-based Multicast). The simulation results show that the proposed TIG is more efficient than both in terms of delay and network overhead.

Implementation Strategy of Global Framework for Climate Service through Global Initiatives in AgroMeteorology for Agriculture and Food Security Sector (선도적 농림기상 국제협력을 통한 농업과 식량안보분야 전지구기후 서비스체계 구축 전략)

  • Lee, Byong-Lyol;Rossi, Federica;Motha, Raymond;Stefanski, Robert
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.2
    • /
    • pp.109-117
    • /
    • 2013
  • The Global Framework on Climate Services (GFCS) will guide the development of climate services that link science-based climate information and predictions with climate-risk management and adaptation to climate change. GFCS structure is made up of 5 pillars; Observations/Monitoring (OBS), Research/ Modeling/ Prediction (RES), Climate Services Information System (CSIS) and User Interface Platform (UIP) which are all supplemented with Capacity Development (CD). Corresponding to each GFCS pillar, the Commission for Agricultural Meteorology (CAgM) has been proposing "Global Initiatives in AgroMeteorology" (GIAM) in order to facilitate GFCS implementation scheme from the perspective of AgroMeteorology - Global AgroMeteorological Outlook System (GAMOS) for OBS, Global AgroMeteorological Pilot Projects (GAMPP) for RES, Global Federation of AgroMeteorological Society (GFAMS) for UIP/RES, WAMIS next phase for CSIS/UIP, and Global Centers of Research and Excellence in AgroMeteorology (GCREAM) for CD, through which next generation experts will be brought up as virtuous cycle for human resource procurements. The World AgroMeteorological Information Service (WAMIS) is a dedicated web server in which agrometeorological bulletins and advisories from members are placed. CAgM is about to extend its service into a Grid portal to share computer resources, information and human resources with user communities as a part of GFCS. To facilitate ICT resources sharing, a specialized or dedicated Data Center or Production Center (DCPC) of WMO Information System for WAMIS is under implementation by Korea Meteorological Administration. CAgM will provide land surface information to support LDAS (Land Data Assimilation System) of next generation Earth System as an information provider. The International Society for Agricultural Meteorology (INSAM) is an Internet market place for agrometeorologists. In an effort to strengthen INSAM as UIP for research community in AgroMeteorology, it was proposed by CAgM to establish Global Federation of AgroMeteorological Society (GFAMS). CAgM will try to encourage the next generation agrometeorological experts through Global Center of Excellence in Research and Education in AgroMeteorology (GCREAM) including graduate programmes under the framework of GENRI as a governing hub of Global Initiatives in AgroMeteorology (GIAM of CAgM). It would be coordinated under the framework of GENRI as a governing hub for all global initiatives such as GFAMS, GAMPP, GAPON including WAMIS II, primarily targeting on GFCS implementations.