• Title/Summary/Keyword: Data Pipeline

Search Result 564, Processing Time 0.025 seconds

A Benchmark Study of Design Codes on Offshore Pipeline Collapse for Ultra-Deepwater

  • Choi Han-Suk
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.38-46
    • /
    • 2006
  • The objective of this paper is to summarize current ultra-deepwater (i.e., up to 3,500 meters water depth) pipeline mechanical design methodologies as part of the limit state design. The standard mechanical design for ultra-deepwater pipelines in the Gulf of Mexico (GOM) is based on API RP 1111. API code also has been used for deepwater projects in west Africa. DNV code OS-F101 was mostly used for deepwater projects in offshore Brazil and Europe. Some pipeline designs in the GOM have started to incorporate parts of the DNV design methodology. A discussion of failure under collapse only and combined loading (i.e. pressure + bending) is presented. The best design criteria are obtained from physical full-scale collapse testing. The comparison of the physical test data and collapse calculations using the DNV and API codes will be presented. It was found that the conservatism still exists in the collapse prediction for ultra-deepwater pipeline using modem design codes such as DNV OS-F101 and API RP 1111.

Development of Inspection Gauge System for Gas Pipeline

  • Han, Hyung-Seok;Yu, Jae-Jong;Park, Chan-Gook;Lee, Jang-Gyu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.370-378
    • /
    • 2004
  • An autonomous pipeline inspection gauge system has been developed for determining position, orientation, curvature, and deformations such as dents and wrinkles of operating pipelines by Korea Gas Company and Seoul National University. The most important part of several subsystems is the Strapdown Inertial Measurement Unit (SIMU), which is integrated with velocity and distance sensors, weld detection system, and digital recording device. The Geometry Pipeline Inspection Gauge (GeoPIG) is designed to operate continuously and autonomously for a week or longer in operating gas pipelines. In this paper, the design concepts, system integration, and data processing/analysis method for the PIG will be presented. Results from the recent experiment for a 58 kilometer gas pipeline will be discussed.

DATA LOGGER APPARATUS FOR MEASUREMENT STRAY CURRENT OF SUBWAY AND POWER LINE (지하철과 전력선의 누설전류 측정을 위한 저장형 데이터 계측장치)

  • Bae, Jeong-Hyo;Ha, Yun-Cheol;Ha, Tae-Hyeon;Lee, Hyeon-Gu;Kim, Dae-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.731-734
    • /
    • 2003
  • In present, most of metallic structures(gas pipeline, oil pipeline, water pipeline, etc) are running parallel with subway and power line in seoul. Moreover subway system and power line make a stray current due to electrical corrosion on metallic structures. The owner of metallic structures has a burden of responsibility for the protection of corrosion and the prevention against big accident such as gas explosion or soil pollution and so on. So, they have to measure and analyze the data about P/S(Pipe to Soil) potential, amplitude of stray current, point of source of stray current and so. In this paper, results of development about data logger apparatus for measurement stray current of subway and power line are presented.

  • PDF

A note on the distance distribution paradigm for Mosaab-metric to process segmented genomes of influenza virus

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.7.1-7.7
    • /
    • 2020
  • In this paper, we present few technical notes about the distance distribution paradigm for Mosaab-metric using 1, 2, and 3 grams feature extraction techniques to analyze composite data points in high dimensional feature spaces. This technical analysis will help the specialist in bioinformatics and biotechnology to deeply explore the biodiversity of influenza virus genome as a composite data point. Various technical examples are presented in this paper, in addition, the integrated statistical learning pipeline to process segmented genomes of influenza virus is illustrated as sequential-parallel computational pipeline.

Proposal an Alternative Data Pipeline to Secure the Timeliness for Official Statistical Indicators (공식발표 통계지표의 적시성 확보를 위한 대안 데이터 파이프라인 구축제안)

  • Yongbok Cho;Dowan Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.89-108
    • /
    • 2023
  • This study provides a comprehensive analysis of recent studies conducted on the topic of nowcasting in order to enhance the accuracy and promptness of official statistical data. Furthermore, we propose an alternative approach involving the utilization of real-time data and its corresponding collection methods to effectively operate a real-time nowcasting model capable of accurately capturing the current economic condition. We explore high-frequency real-time data that can predict economic indicators in both the public and private sectors and propose a pipeline for data collection processing and modeling that is based on cloud platforms. Furthermore we validate the essential elements required for the implementation of real-time nowcasting, as well as their data management protocols to ensure the reliability and consistency needed for accurate forecasting of official statistical indicators.

Safety Monitoring Sensor for Underground Subsidence Risk Assessment Surrounding Water Pipeline (상수도관로의 주변 지반침하 위험도 평가를 위한 안전감시 센서)

  • Kwak, Pill-Jae;Park, Sang-Hyuk;Choi, Chang-Ho;Lee, Hyun-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.306-310
    • /
    • 2015
  • IoT(Internet of Things) based underground risk assessment system surrounding water pipeline enables an advanced monitoring and prediction for unexpected underground hazards such as abrupt road-side subsidence and urban sinkholes due to a leak in water pipeline. For the development of successful assessment technology, the PSU(Water Pipeline Safety Unit) which detects the leakage and movement of water pipes. Then, the IoT-based underground risk assessment system surrounding water pipeline will be proposed. The system consists of early detection tools for underground events and correspondence services, by analyzing leakage and movement data collected from PSU. These methods must be continuous and reliable, and cover certain block area ranging a few kilometers, for properly applying to regional water supply changes.

Transient Ground Deformation induced by Sequential Earthquakes and Estimation of Underground Water Pipeline Performance in Canterbury, New Zealand (뉴질랜드 캔터배리 지역 연속지진에 의해 발생된 일시지반변형과 매설된 상수도관 성능평가)

  • Jeon, Sang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2818-2827
    • /
    • 2015
  • The spatial patterns and characteristics of these sequential earthquakes and ground motions induced by the earthquakes are examined by contours of peak ground velocity (PGV) and geometric mean peak ground velocity (GMPGV) using both ordinary kriging in geographical information system (GIS) and data, the records obtained from strong motion stations, acquired after recent sequential earthquakes in Canterbury, New Zealand (NZ). The performance of underground water pipeline system is examined by using data acquired after earthquakes. The spatial distribution of GMPGV is superimposed on water pipeline repairs throughout the water distribution system in areas affected principally by transient ground motion using GIS and then water pipeline repair rates, expressed as repairs/km, for different types of pipe are evaluated relative to the estimated GMPGV outside liquefaction areas. The earthquake performance of underground water pipeline systems is summarized in this study.

Data Reduction Pipeline for the MIRIS Space Observation Camera

  • Pyo, Jeonghyun;Kim, Il-Joong;Park, Won-Kee;Jeong, Woong-Seob;Lee, Dae-Hee;Moon, Bongkon;Park, Youngsik;Park, Sung-Joon;Park, Kwijong;Lee, Duk-Hang;Nam, Uk-won;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.74-74
    • /
    • 2013
  • Multi-purpose Infra-Red Imaging System (MIRIS) is the main payload of the Science and Technology Satellite-3 (STSAT-3) to be launched in the late half of this year. For the Space Observation Camera (SOC) of MIRIS, we developed the data reduction pipeline with Python powered by Astropy, a community Python library for astronomy. The pipeline features the following functionalities: i) to retrieve the raw observation data from database and convert it to a FITS format, ii) to mask bad pixels, iii) to correct the non-linearity, iv) to differentiate the frames, v) to correct the flat-field, vi) to correct focal-plane distortion, vii) to improve the world coordinate system (WCS) information using known point-source catalog, and viii) to combine the sequentially taken frames. The pipeline is well modularized and has flexibility for later update. In this poster, we introduce the details of the pipeline's features and the future maintenance plan.

  • PDF

Comparative Analysis on the Causes and Frequency of Recent Gas Pipelines Accidents in Major Overseas Countries (해외 주요국에서의 최근 가스배관 사고의 원인과 빈도의 비교 분석)

  • Kim, Dae-Woong;Bae, Kyung-Oh;Shin, Hyung-Seop;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.53-64
    • /
    • 2018
  • Natural gas is an explosive fluid and can cause severe human/material damage when buried high-pressure pipeline is failure, and there have been reported cases of considerable human life damage to actual buried pipeline failure. In domestic cases, the length and duration of pipeline operating are short due to rapid growth. Therefore, it is a fact that the establishment of effective accident data is insufficient for the cause of the accident. In order to systematically construct an accident database, the operation history of natural gas pipeline is longer than domestic, and the cause and frequency analysis of recent natural gas pipeline related accidents occurred in overseas major countries with a long pipeline network was conducted. Then, after grasping the trend of occurrence frequency by incident cause, we tried to establish the foundation for securing the stability of the domestic high-pressure gas transport pipeline network.

Evaluation of Numerical Model of a Ball Valve used for a Gas Pipeline (가스 파이프라인용 볼 밸브의 수치해석 모델 평가)

  • KIM, CHUL-KYU;LEE, KYOUNG-KEUN;LIM, TAE-GYUN;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.764-772
    • /
    • 2016
  • This paper presents on the evaluation of numerical analysis model of a ball valve used for a gas pipeline. The ball valve has important role to control the gas flow of the pipeline as well as safety operation to prevent gas explosion at the emergency. For the validation of numerical simulation, the computational domains are introduced three different types: a hexahedron chamber connected to a pipeline outlet without considering the geometry of pressure tubes, a pipeline only considered the geometry of pressure tubes, and a pipeline connected both of the a hexahedron chamber and pressure tubes. The commercial code, SC/Tetra, is introduced to solve the three-dimensional steady-state Reynolds-averaged Navier-Stokes analysis in the present study. The valve flow coefficient and valve loss coefficient with respect to the valve opening rate of 30%, 50%, and 70% are compared with experimental results. Throughout the numerical analysis for the three analysis domains, pressure computed along the pipeline is affected by computational domains. It is noted pressure obtained by the computational model considering both of the a hexahedron chamber and pressure tubes has a relatively good agreement to the experimental data.