• Title/Summary/Keyword: Data Mining Process

Search Result 678, Processing Time 0.031 seconds

Process Planning Method under Make-to-Order Production System using Data Mining (데이터마이닝을 이용한 수주생산시스템의 공정계획방안)

  • Oh, Kyung-Mo;Park, Chang-Kwon
    • IE interfaces
    • /
    • v.18 no.2
    • /
    • pp.148-157
    • /
    • 2005
  • The manufacturing industry with Make-to-Order production system is difficult to decide the standard information for the product and the demand is variable to estimate. In this paper, we concerned with the process planning method using data mining in the manufacturing industry with Make-to-Order environment. The subject of our study is the industry transformer plant which is received an diverse order of customer and then produced the product. Currently, process planning method is classified the standard information by hand based on the acquired knowledge through the experience. The standard information stored the various information, such as work sequence, time and so on. This process planning method needs an experts which possesses the field experience for several years. For the product specification which is varied in each order, current process planning method is not efficient due to need many times To solve this problem, we extract the information using data mining process for each processing time, and then construct the knowledge base. We propose a method which is the process planning of the industry transformer product in Make-to-Order environment using the knowledge base.

A Quality Data Mining System in TFT-LCD Industry (TFT-LCD 산업에서의 품질마이닝 시스템)

  • Lee, Hyun-Woo;Nam, Ho-Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • Data mining is a useful tool for analyzing data from different perspectives and for summarizing them into useful information. Recently, the data mining methods are applied to solving quality problems of the manufacturing processes. This paper discusses the problems of construction of a quality mining system, which is based on the various data mining methods. The quality mining system includes recipe optimization, significant difference test, finding critical processes, forecasting the yield. The contents and system of this paper are focused on the TFT-LCD manufacturing process. We also provide some illustrative field examples of the quality mining system.

A Study on Process Management Method of Offshore Plant Piping Material using Process Mining Technique (프로세스 마이닝 기법을 이용한 해양플랜트 배관재 제작 공정 관리 방법에 관한 연구)

  • Park, JungGoo;Kim, MinGyu;Woo, JongHun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.143-151
    • /
    • 2019
  • This study describes a method for analyzing log data generated in a process using process mining techniques. A system for collecting and analyzing a large amount of log data generated in the process of manufacturing an offshore plant piping material was constructed. The analyzed data was visualized through various methods. Through the analysis of the process model, it was evaluated whether the process performance was correctly input. Through the pattern analysis of the log data, it is possible to check beforehand whether the problem process occurred. In addition, we analyzed the process performance data of partner companies and identified the load of their processes. These data can be used as reference data for pipe production allocation. Real-time decision-making is required to cope with the various variances that arise in offshore plant production. To do this, we have built a system that can analyze the log data of real - time system and make decisions.

Analysis of a Repair Processes Using a Process Mining Tool (프로세스 마이닝 기법을 활용한 고장 수리 프로세스 분석)

  • Choi, Sang Hyun;Han, Kwan Hee;Lim, Gun Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.4
    • /
    • pp.399-406
    • /
    • 2013
  • Recently, studies about process mining for creating and analyzing business process models from log data have received much attention from BPM (Business Process Management) researchers. Process mining is a kind of method that extracts meaningful information and hidden rules from the event log of enterprise information systems such as ERP and BPM. In this paper, repair processes of electronic devices are analyzed using ProM which is a process mining tool. And based on the analysis of repair processes, the method for finding major failure patterns is proposed by multi-dimensional data analysis beyond simple statistics. By using the proposed method, the reliability of electronic device can be increased by providing the identified failure patterns to design team.

Tailoring Operations based on Relational Algebra for XES-based Workflow Event Logs

  • Yun, Jaeyoung;Ahn, Hyun;Kim, Kwanghoon Pio
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.21-28
    • /
    • 2019
  • Process mining is state-of-the-art technology in the workflow field. Recently, process mining becomes more important because of the fact that it shows the status of the actual behavior of the workflow model. However, as the process mining get focused and developed, the material of the process mining - workflow event log - also grows fast. Thus, the process mining algorithms cannot operate with some data because it is too large. To solve this problem, there should be a lightweight process mining algorithm, or the event log must be divided and processed partly. In this paper, we suggest a set of operations that control and edit XES based event logs for process mining. They are designed based on relational algebra, which is used in database management systems. We designed three operations for tailoring XES event logs. Select operation is an operation that gets specific attributes and excludes others. Thus, the output file has the same structure and contents of the original file, but each element has only the attributes user selected. Union operation makes two input XES files into one XES file. Two input files must be from the same process. As a result, the contents of the two files are integrated into one file. The final operation is a slice. It divides anXES file into several files by the number of traces. We will show the design methods and details below.

An Evaluation of the Suitability of Data Mining Algorithms for Smart-Home Intelligent-Service Platforms (스마트홈 지능형 서비스 플랫폼을 위한 데이터 마이닝 기법에 대한 적합도 평가)

  • Kim, Kilhwan;Keum, Changsup;Chung, Ki-Sook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.68-77
    • /
    • 2017
  • In order to implement the smart home environment, we need an intelligence service platform that learns the user's life style and behavioral patterns, and recommends appropriate services to the user. The intelligence service platform should embed a couple of effective and efficient data mining algorithms for learning from the data that is gathered from the smart home environment. In this study, we evaluate the suitability of data mining algorithms for smart home intelligent service platforms. In order to do this, we first develop an intelligent service scenario for smart home environment, which is utilized to derive functional and technical requirements for data mining algorithms that is equipped in the smart home intelligent service platform. We then evaluate the suitability of several data mining algorithms by employing the analytic hierarchy process technique. Applying the analytical hierarchy process technique, we first score the importance of functional and technical requirements through a hierarchical structure of pairwise comparisons made by experts, and then assess the suitability of data mining algorithms for each functional and technical requirements. There are several studies for smart home service and platforms, but most of the study have focused on a certain smart home service or a certain service platform implementation. In this study, we focus on the general requirements and suitability of data mining algorithms themselves that are equipped in smart home intelligent service platform. As a result, we provide a general guideline to choose appropriate data mining techniques when building a smart home intelligent service platform.

TFT-LCD 산업에서의 품질마이닝 시스템

  • Lee, Hyeon-U;Nam, Ho-Su;Choe, Gyeong-Ho
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.142-148
    • /
    • 2006
  • Data mining is a useful tool for analyzing data from different perspectives and for summarizing them into useful information. Recently, the data mining methods are applied to solving quality problems of the manufacturing processes. This paper discusses the problems of construction of a quality mining system, which is based on the various data mining methods. The quality mining system includes recipe optimization, significant difference test, finding critical processes, forecasting the yield. The contents and system of this paper are focused on the TFT-LCD manufacturing process. We also provide some illustrative field examples of the quality mining system.

  • PDF

Gene Algorithm of Crowd System of Data Mining

  • Park, Jong-Min
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.40-44
    • /
    • 2012
  • Data mining, which is attracting public attention, is a process of drawing out knowledge from a large mass of data. The key technique in data mining is the ability to maximize the similarity in a group and minimize the similarity between groups. Since grouping in data mining deals with a large mass of data, it lessens the amount of time spent with the source data, and grouping techniques that shrink the quantity of the data form to which the algorithm is subjected are actively used. The current grouping algorithm is highly sensitive to static and reacts to local minima. The number of groups has to be stated depending on the initialization value. In this paper we propose a gene algorithm that automatically decides on the number of grouping algorithms. We will try to find the optimal group of the fittest function, and finally apply it to a data mining problem that deals with a large mass of data.

Buying Customer Classification in Automotive Corporation with Decision Tree (의사결정트리를 통한 자동차산업의 구매패턴분류)

  • Lee, Byoung-Yup;Park, Yong-Hoon;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.372-380
    • /
    • 2010
  • Generally, data mining is the process of analyzing data from different perspectives and summarizing it into useful information that can be used to increase revenue, cuts costs, or both. It allows users to analyze data from many different dimensions or angles, categorize it, and summarize the relationships identified. Technically, data mining is the process of finding correlations or patterns among dozens of fields in large relational databases. Data mining is one of the fastest growing field in the computer industry. Because of According to computer technology has been improving, Massive customer data has stored in database. Using this massive data, decision maker can extract the useful information to make a valuable plan with data mining. Data mining offers service providers great opportunities to get closer to customer. Data mining doesn't always require the latest technology, but it does require a magic eye that looks beyond the obvious to find and use the hidden knowledge to drive marketing strategies. Automotive market face an explosion of data arising from customer but a rate of increasing customer is getting lower. therefore, we need to determine which customer are profitable clients whom you wish to hold. This paper builds model of customer loyalty detection and analyzes customer buying patterns in automotive market with data mining using decision tree as a quinlan C4.5 and basic statics methods.

Quality Imporovement of Auto-Parts Using Data Mining (데이터마이닝을 이용한 자동차부품 품질개선 연구)

  • Byun, Yong-Wan;Yang, Jae-Kyung
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.3
    • /
    • pp.333-339
    • /
    • 2010
  • Data mining is the process of finding and analyzing data from a big database and summarizing it into useful information for a decision-making. A variety of data mining techniques have been being used for wide range of industries. One application of those is especially so for gathering meaningful information from process data in manufacturing factories for quality improvement. The purpose of this paper is to provide a methodology to improve manufacturing quality of fuel tanks which are auto-parts. The methodology is to analyse influential attributes and establish a model for optimal manufacturing condition of fuel tanks to improve the quality using decision tree, association rule, and feature selection.