• Title/Summary/Keyword: Data Lake

Search Result 449, Processing Time 0.224 seconds

Application of EFDC and WASP7 in Series for Water Quality Modeling of the Yongdam Lake, Korea

  • Seo, Dong-Il;Kim, Min-Ae
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.439-447
    • /
    • 2011
  • This study aims to test the feasibility of combined use of EFDC (Environmental Fluid Dynamics Code) hydrodynamic model and WASP7.3 (Water Quality Analysis Program) model to improve accuracy of water quality predictions of the Yongdam Lake, Korea. The orthogonal curvilinear grid system was used for EFDC model to represent riverine shape of the study area. Relationship between volume, surface and elevation results were checked to verify if the grid system represents morphology of the lake properly. Monthly average boundary water quality conditions were estimated using the monthly monitored water quality data from Korean Ministry of Environment DB system. Monthly tributary flow rates were back-routed using dam discharge data and allocated in proportion to each basin area as direct measurements were not available. The optimum number of grid system was determined to be 372 horizontal cells and 10 vertical layers of the site for 1 year simulation of hydrodynamics and water quality out of iterative trials. Monthly observed BOD, TN, TP and Chl-a concentrations inside the lake were used for calibration of WASP7.3 model. This study shows that EFDC and WASP can be used in series successfully to improve accuracy in water quality modeling. However, it was observed that the amount of data to develop inflow water quality and flow rate boundary conditions and water quality data inside lake for calibration were not enough for accurate modeling. It is suggested that object-oriented data collection systems would be necessary to ensure accuracy of EFDC-WASP model application and thus for efficient lake water quality management strategy development.

Estimation of Ecosystem Metabolism Using High-frequency DO and Water Temperature Sensor Data in Daecheong Lake (고빈도 DO 및 수온 센서 자료를 이용한 대청호 생태계 신진대사 산정)

  • Kim, Sung-Jin;Chung, Se-Woong;Park, Hyungseok;Oh, Jungkuk;Park, Daeyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.579-590
    • /
    • 2018
  • The lakes' metabolism bears important information for the assessment of the carbon budget due to the accumulation or loss of carbon in the lake as well as the dynamics of the food webs through primary production. A lake-scale metabolism is evaluated by Gross Primary Production (GPP), Ecosystem Respiration (R), and Net Ecosystem Production (NEP), which is the difference between the first two values. Methods for estimating GPP and R are based on the levels carbon and oxygen. Estimation of carbon is expensive because of the use of radioactive materials which requires a high degree of proficiency. The purpose of this study was to estimate Lake Daecheong ecosystem metabolism using high frequency water temperature data and DO measurement sensor, widely utilized in the field of water quality monitoring, and to evaluate the possibility of using the application method. High frequency data was collected at intervals of 10 minutes from September to December 2017 by installing a thermistor chain and a DO sensor in downstream of Daechung Dam. The data was then used to estimate GPP, R and NEP using the R public program LakeMetabolizer, and other metabolism models (mle, ols, kalman, bookkeep). Calculations of gas exchange coefficient methods (cole, crusius, heiskanen, macIntyre, read, soloviev, vachon) were compared. According to the result, Lake Daecheong has some deviation based on the application method, but it was generally estimated that the NEP value is negative and acts as a source of atmospheric carbon in a heterotrophic system. Although the high frequency sensor data used in this study had negative and positive GPP and R values during the physical mixing process, they can be used to monitor real-time metabolic changes in the ecosystem if these problems are solved.

Analysis of Benzo[a]pyrene and Bisphenol A in lakes of Kyonggi-Do Province (환경홀몬 Benzo[a]pyrene및 Bisphenol A의 경기도 일부호소에서의 요염실태 및 위해성 평가 방안)

  • 박요안;박송자;이병무
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.2
    • /
    • pp.51-55
    • /
    • 2003
  • Benzo(a)pyrene and bisphenol A have been classified as endocrine disrupting chemicals (EDCs), which have been of concern in toxicology and environmental sciences. Benzo(a)pyrene and bisphenol A were monitored by HPLC or GC-MS in Baekwoon and Ilwirl lakes of Kyonggi-Do province to investigate contamination levels of EDCs. During the period between June, 2000 and August, 2000, water samples were collected from four different sites of each lake once per month. Contamination levels of benzo(a)pyrene were 3.27~4.25 ppb in Ilwirl lake and 2.00~2.33 ppb in Baekwoon lake, respectively. Bisphenol A levels were detected with the range of 0.33~7.94 and 0.43~4.71 for Baekwoon lake and Ilwirl lake, respectively. pH levels were higher in Ilwirl lake than in Baekwoon lake, where the contamination was relatively lower. These data suggest that lakes in Kyonggi-Do province could be contaminated with EDCs and be subjected to the routine monitoring and water quality control.

  • PDF

An Application of the SRTM Dataset in Inland Water Stage Measurement

  • Bhang, Kon Joon;Lee, Jin-Duk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.06a
    • /
    • pp.83-84
    • /
    • 2014
  • For hydrologic applications, lake levels is very important. As a first step in developing a remote-sensing based approach, lake stage estimation using remote sensing was proposed with the SRTM data from February 2000, which was providing a one-time snapshot. After several steps using contouring, masking, and CED, it was found that iterative contour fitting to a lake outline provided the outstanding result with the operator's decision. If the lake size is large enough, a constant meter of the difference removal due to bias found by Bhang et al. (2007) might be useful for more accurate estimations for the methods. A lake-level snapshot using SRTM data could provide estimates within 0.5 m level of accuracy for large lakes (> $10km^2$) with contouring. Also, even if the processing algorithm is complex, the accuracy was reliable. Overall, we confirmed that this study would provide useful information to ameliorate the quality of the SAR-derived DEMs specifically for water areas and if more expanded, SAR images can fruit result in water monitoring.

  • PDF

Three-dimensional Numerical Modeling of Water Temperature and Internal Waves in a Large Stratified Lake (대형 성층 호수의 수온과 내부파의 3차원 수치 모델링)

  • Chung, Se-Woong;Schladow, S. Geoffrey
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.367-376
    • /
    • 2015
  • The momentum and kinetic turbulent energy carried by the wind to a stratified lake lead to basin-scale motions, which provide a major driving force for vertical and horizontal mixing. A three-dimensional (3D) hydrodynamic model was applied to Lake Tahoe, located between California and Nevada, USA, to simulate the dominant basin-scale internal waves in the deep lake. The results demonstrated that the model well represents the temporal and vertical variations of water temperature that allows the internal waves to be energized correctly at the basin scale. Both the model and thermistor chain (TC) data identified the presence of Kelvin modes and Poincare mode internal waves. The lake was weakly stratified during the study period, and produced large amplitude (up to 60 m) of internal oscillations after several wind events and partial upwelling near the southwestern lake. The partial upwelling and followed coastal jets could be an important feature of basin-scale internal waves because they can cause re-suspension and horizontal transport of fine particles from nearshore to offshore. The internal wave dynamics can be also associated with the distributions of water quality variables such as dissolved oxygen and nutrients in the lake. Thus, the basin-scale internal waves and horizontal circulation processes need to be accurately modeled for the correct simulation of the dissolved and particulate contaminants, and biogeochemical processes in the lake.

FEASIBILITY OF IMAGE PROCESSING TECHNIQUES FOR LAKE LEVEL EXTRACTION WITH C-BAND SRTM DEM

  • Bhang, Kon-Joon;Schwartz, Franklin Walter;Park, Seok-Soon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.173-176
    • /
    • 2008
  • Lake studies play an important role in water management, ecology, and other environmental issues. Typically, monitoring lake levels is the first step on the lake studies. However, for the Prairie Pothole Region (PPR) of North America having millions of small lakes and potholes, on-site measurement for lake levels is almost impossible with the conventional gage stations. Therefore, we employed Geographic Information System (GIS) and remote sensing approach with the Shuttle Radar Topography Mission data to extract lake levels. Several image processing techniques were used to extract lake levels for January, 2000 as a one-time snapshot which will be useful in historic lake level reconstruction. This study is associated with other remote sensing datasets such as Landsat imagery and Digital Orthophoto Quadrangle (DOQ). In this research, firstly, image processing techniques like FFT filtering, Lee-sigma, masking with Canny Edge Detector, and contouring were tested for lake level estimation. The semi-automated contouring technique was developed to accomplish the bulk processing for large amount of lakes in this region. Also, effectiveness of each method for bulk processing was evaluated.

  • PDF

Design of Lake Ecological Observation Data Management

  • Ahn, Bu-Young;Jung, Young-Jin;Lee, Myung-Sun;Jeong, Choong-Kyo;Kim, Bom-Chul
    • International Journal of Contents
    • /
    • v.7 no.1
    • /
    • pp.45-51
    • /
    • 2011
  • To protect water pollution and scarcity in lake and river, water quality monitoring applications have become important tools to understand the change of aquatic ecosystem. KLEON (Korean Lake Ecological Observatory Network) is designed to manage and share the ecological observations. The various kinds of water quality and phytoplankton observations are collected from the selected observatories such as seven lakes/rivers/wetlands. To deeply understand the collected observations with weather, KLEON also manages the observatory information such as lake, dam, floodgate, and weather. The accumulated observation and analyzed results are used to improve the water quality index of the observatories and encourage the ecologists' cooperation.

An Analysis on the First Flush Phenomenon by Stormwater Runoff in Eutrophic Lake Watershed (부영양상태 호수유역의 강우유출수에 의한 초기세척효과 분석)

  • Cho, Jae-Heon;Seo, Hyung-Jun
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.5
    • /
    • pp.341-350
    • /
    • 2007
  • Lake Youngrang is a lagoon whose effluent flows into the East Sea. Because two resort towns and two golf courses are situated at the lake basin, many tourists visit this area. Stormwater runoff surveys were carried out for the eight storm events from 2004 to 2005 in the eutrophic lake watershed to give a basic data for the diffuse pollution control of the lake. Dimensionless mass-volume curves indicating the distribution of pollutant mass vs. volume were used to analyze the first flush phenomenon. The mass-volume curves were fitted with a power function and polynomial equation curves. The regression analysis showed that the polynomial equation curves were better than the power function in representing the tendency of the first flush, and second degree polynomial equation curves indicated the strength of the first flush effectively.

Monitoring and Analyzing Water Area Variation of Lake Enriquillo, Dominican Republic by Integrating Multiple Endmember Spectral Mixture Analysis and MODIS Data

  • Kim, Sang Min;Yoon, Sang Hyun;Ju, Sungha;Heo, Joon
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.2
    • /
    • pp.59-71
    • /
    • 2018
  • Lake Enriquillo, the largest lake in the Dominican Republic, recently has undergone unusual water area changes since 2001 thus it has been affected seriously by local community's livelihood. Earthquakes and seismic activities of Hispaniola plate tectonic coupled with human activities and climate change are addressed as factors causing the increasing. Thus, a thorough study on relationship between lake area changing, and those factors is needed urgently. To do so, this study applied MESMA on MODIS data to extract water area of Lake Enriquillo during 2001 and 2012 bimonthly, with six issues 12-year. MODIS provides high temporal resolution, and its coarse spatial resolution is compensated by MESMA fraction map. The increase in water area was $142.2km^2$, and the maximum lake area was $338.0km^2$ (in 2012). Water areas extracted by two Landsat scenes at two different times with three image classification approaches (ISODATA, MNDWI, and TCW) were used to assess accuracy of MODIS and MESMA results; it indicated that MESMA water areas are same as ISODATA's, less than 0.4%, while the highest difference is between MESMA and TCW, 2.4%. A number of previously formulated hypotheses of lake area change were investigated based on the outcomes of the present study, though none of them could fully explain the changes.

Estimation of the Forestry Area Decrease Effect on the Soil Erosion in Rural Watershed (농촌유역의 산림지 면적 감소에 따른 유역 토양유실량 변화 추정)

  • Kim, Sang-Min;Im, Sang-Jun;Park, Seung-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.10 no.1 s.22
    • /
    • pp.19-26
    • /
    • 2004
  • In this paper, forestry area change effect on the soil erosion in Asan lake watershed was estimated. Temporal variations of land use in the study watershed were analyzed from Landsat-5 TM remote sensing images. Geographic Information System (GIS) combined with Universal Soil Loss Equation (USLE) was used to estimate the soil erosion of Asan lake watershed. Spatial data for each USLE factors was obtained from the Landsat-5 TM remote sensing images and 1/25,000 scale digital contour maps. Sediment yield to Asan lake was estimated by sediment delivery ratio and sediment accumulation in lake was estimated by trap efficiency. The estimation methods were validated for sediment accumulation in Asan lake. From the hydrographic survey from 1974 to 2003 for Asan lake, sediment accumulation was measured. The estimated accumulation sediment of 303,569ton/yr showed similar value with observed of 295,888ton/yr. From the validated estimation methods, the increasing amount of soil erosion when 1% of forest area in Asan lake watershed decreases was calculated from 12.91 to 1482.05ton/yr.