• Title/Summary/Keyword: Data Constraint

Search Result 722, Processing Time 0.018 seconds

Quality Assurance of Patients for Intensity Modulated Radiation Therapy (세기조절방사선치료(IMRT) 환자의 QA)

  • Yoon Sang Min;Yi Byong Yong;Choi Eun Kyung;Kim Jong Hoon;Ahn Seung Do;Lee Sang-Wook
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 2002
  • Purpose : To establish and verify the proper and the practical IMRT (Intensity--modulated radiation therapy) patient QA (Quality Assurance). Materials and Methods : An IMRT QA which consists of 3 steps and 16 items were designed and examined the validity of the program by applying to 9 patients, 12 IMRT cases of various sites. The three step OA program consists of RTP related QA, treatment information flow QA, and a treatment delivery QA procedure. The evaluation of organ constraints, the validity of the point dose, and the dose distribution are major issues in the RTP related QA procedure. The leaf sequence file generation, the evaluation of the MLC control file, the comparison of the dry run film, and the IMRT field simulate image were included in the treatment information flow procedure QA. The patient setup QA, the verification of the IMRT treatment fields to the patients, and the examination of the data in the Record & Verify system make up the treatment delivery QA procedure. Results : The point dose measurement results of 10 cases showed good agreement with the RTP calculation within $3\%$. One case showed more than a $3\%$ difference and the other case showed more than $5\%$, which was out side the tolerance level. We could not find any differences of more than 2 mm between the RTP leaf sequence and the dry run film. Film dosimetry and the dose distribution from the phantom plan showed the same tendency, but quantitative analysis was not possible because of the film dosimetry nature. No error had been found from the MLC control file and one mis-registration case was found before treatment. Conclusion : This study shows the usefulness and the necessity of the IMRT patient QA program. The whole procedure of this program should be peformed, especially by institutions that have just started to accumulate experience. But, the program is too complex and time consuming. Therefore, we propose practical and essential QA items for institutions in which the IMRT is performed as a routine procedure.

A Template-based Interactive University Timetabling Support System (템플릿 기반의 상호대화형 전공강의시간표 작성지원시스템)

  • Chang, Yong-Sik;Jeong, Ye-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.121-145
    • /
    • 2010
  • University timetabling depending on the educational environments of universities is an NP-hard problem that the amount of computation required to find solutions increases exponentially with the problem size. For many years, there have been lots of studies on university timetabling from the necessity of automatic timetable generation for students' convenience and effective lesson, and for the effective allocation of subjects, lecturers, and classrooms. Timetables are classified into a course timetable and an examination timetable. This study focuses on the former. In general, a course timetable for liberal arts is scheduled by the office of academic affairs and a course timetable for major subjects is scheduled by each department of a university. We found several problems from the analysis of current course timetabling in departments. First, it is time-consuming and inefficient for each department to do the routine and repetitive timetabling work manually. Second, many classes are concentrated into several time slots in a timetable. This tendency decreases the effectiveness of students' classes. Third, several major subjects might overlap some required subjects in liberal arts at the same time slots in the timetable. In this case, it is required that students should choose only one from the overlapped subjects. Fourth, many subjects are lectured by same lecturers every year and most of lecturers prefer the same time slots for the subjects compared with last year. This means that it will be helpful if departments reuse the previous timetables. To solve such problems and support the effective course timetabling in each department, this study proposes a university timetabling support system based on two phases. In the first phase, each department generates a timetable template from the most similar timetable case, which is based on case-based reasoning. In the second phase, the department schedules a timetable with the help of interactive user interface under the timetabling criteria, which is based on rule-based approach. This study provides the illustrations of Hanshin University. We classified timetabling criteria into intrinsic and extrinsic criteria. In intrinsic criteria, there are three criteria related to lecturer, class, and classroom which are all hard constraints. In extrinsic criteria, there are four criteria related to 'the numbers of lesson hours' by the lecturer, 'prohibition of lecture allocation to specific day-hours' for committee members, 'the number of subjects in the same day-hour,' and 'the use of common classrooms.' In 'the numbers of lesson hours' by the lecturer, there are three kinds of criteria : 'minimum number of lesson hours per week,' 'maximum number of lesson hours per week,' 'maximum number of lesson hours per day.' Extrinsic criteria are also all hard constraints except for 'minimum number of lesson hours per week' considered as a soft constraint. In addition, we proposed two indices for measuring similarities between subjects of current semester and subjects of the previous timetables, and for evaluating distribution degrees of a scheduled timetable. Similarity is measured by comparison of two attributes-subject name and its lecturer-between current semester and a previous semester. The index of distribution degree, based on information entropy, indicates a distribution of subjects in the timetable. To show this study's viability, we implemented a prototype system and performed experiments with the real data of Hanshin University. Average similarity from the most similar cases of all departments was estimated as 41.72%. It means that a timetable template generated from the most similar case will be helpful. Through sensitivity analysis, the result shows that distribution degree will increase if we set 'the number of subjects in the same day-hour' to more than 90%.