• Title/Summary/Keyword: Data Clustering

Search Result 2,747, Processing Time 0.031 seconds

A Simple Tandem Method for Clustering of Multimodal Dataset

  • Cho C.;Lee J.W.;Lee J.W.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.729-733
    • /
    • 2003
  • The presence of local features within clusters incurred by multi-modal nature of data prohibits many conventional clustering techniques from working properly. Especially, the clustering of datasets with non-Gaussian distributions within a cluster can be problematic when the technique with implicit assumption of Gaussian distribution is used. Current study proposes a simple tandem clustering method composed of k-means type algorithm and hierarchical method to solve such problems. The multi-modal dataset is first divided into many small pre-clusters by k-means or fuzzy k-means algorithm. The pre-clusters found from the first step are to be clustered again using agglomerative hierarchical clustering method with Kullback- Leibler divergence as the measure of dissimilarity. This method is not only effective at extracting the multi-modal clusters but also fast and easy in terms of computation complexity and relatively robust at the presence of outliers. The performance of the proposed method was evaluated on three generated datasets and six sets of publicly known real world data.

  • PDF

Determining the Optimal Number of Signal Clusters Using Iterative HMM Classification

  • Ernest, Duker Junior;Kim, Yoon Joong
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.33-37
    • /
    • 2018
  • In this study, we propose an iterative clustering algorithm that automatically clusters a set of voice signal data without a label into an optimal number of clusters and generates hmm model for each cluster. In the clustering process, the likelihood calculations of the clusters are performed using iterative hmm learning and testing while varying the number of clusters for given data, and the maximum likelihood estimation method is used to determine the optimal number of clusters. We tested the effectiveness of this clustering algorithm on a small-vocabulary digit clustering task by mapping the unsupervised decoded output of the optimal cluster to the ground-truth transcription, we found out that they were highly correlated.

Image Segmentation Using an Extended Fuzzy Clustering Algorithm (확장된 퍼지 클러스터링 알고리즘을 이용한 영상 분할)

  • 김수환;강경진;이태원
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.3
    • /
    • pp.35-46
    • /
    • 1992
  • Recently, the fuzzy theory has been adopted broadly to the applications of image processing. Especially the fuzzy clustering algorithm is adopted to image segmentation to reduce the ambiguity and the influence of noise in an image.But this needs lots of memory and execution time because of the great deal of image data. Therefore a new image segmentation algorithm is needed which reduces the memory and execution time, doesn't change the characteristices of the image, and simultaneously has the same result of image segmentation as the conventional fuzzy clustering algorithm. In this paper, for image segmentation, an extended fuzzy clustering algorithm is proposed which uses the occurence of data of the same characteristic value as the weight of the characteristic value instead of using the characteristic value directly in an image and it is proved the memory reduction and execution time reducted in comparision with the conventional fuzzy clustering algorithm in image segmentation.

  • PDF

An Adaptive Clustering Algorithm Based on Genetic Algorithm (유전자 알고리즘 기반 적응 군집화 알고리즘)

  • Park Namhyun;Ahn Chang Wook;Ramakrishna R.S.
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.459-462
    • /
    • 2004
  • This paper proposes a genetically inspired adaptive clustering algorithm. The algorithm automatically discovers the actual number of clusters and efficiently performs clustering without unduly compromising cluster purity. Chromosome encoding that ensures the correct number of clusters and cluster purity is discussed. The required fitness function is desisted on the basis of modified similarity criteria and genetic operators. These are incorporated into the proposed adaptive clustering algorithm. Experimental results show the efficiency of the clustering algorithm on synthetic data sets and real world data sets.

  • PDF

Damage identification for high-speed railway truss arch bridge using fuzzy clustering analysis

  • Cao, Bao-Ya;Ding, You-Liang;Zhao, Han-Wei;Song, Yong-Sheng
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.315-333
    • /
    • 2016
  • This study aims to perform damage identification for Da-Sheng-Guan (DSG) high-speed railway truss arch bridge using fuzzy clustering analysis. Firstly, structural health monitoring (SHM) system is established for the DSG Bridge. Long-term field monitoring strain data in 8 different cases caused by high-speed trains are taken as classification reference for other unknown cases. And finite element model (FEM) of DSG Bridge is established to simulate damage cases of the bridge. Then, effectiveness of one fuzzy clustering analysis method named transitive closure method and FEM results are verified using the monitoring strain data. Three standardization methods at the first step of fuzzy clustering transitive closure method are compared: extreme difference method, maximum method and non-standard method. At last, the fuzzy clustering method is taken to identify damage with different degrees and different locations. The results show that: non-standard method is the best for the data with the same dimension at the first step of fuzzy clustering analysis. Clustering result is the best when 8 carriage and 16 carriage train in the same line are in a category. For DSG Bridge, the damage is identified when the strain mode change caused by damage is more significant than it caused by different carriages. The corresponding critical damage degree called damage threshold varies with damage location and reduces with the increase of damage locations.

A Scalable Clustering Method for Categorical Sequences (범주형 시퀀스들에 대한 확장성 있는 클러스터링 방법)

  • Oh, Seung-Joon;Kim, Jae-Yearn
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.136-141
    • /
    • 2004
  • There has been enormous growth in the amount of commercial and scientific data, such as retail transactions, protein sequences, and web-logs. Such datasets consist of sequence data that have an inherent sequential nature. However, few clustering algorithms consider sequentiality. In this paper, we study how to cluster sequence datasets. We propose a new similarity measure to compute the similarity between two sequences. We also present an efficient method for determining the similarity measure and develop a clustering algorithm. Due to the high computational complexity of hierarchical clustering algorithms for clustering large datasets, a new clustering method is required. Therefore, we propose a new scalable clustering method using sampling and a k-nearest-neighbor method. Using a real dataset and a synthetic dataset, we show that the quality of clusters generated by our proposed approach is better than that of clusters produced by traditional algorithms.

Clustering Gene Expression Data by MCL Algorithm (MCL 알고리즘을 사용한 유전자 발현 데이터 클러스터링)

  • Shon, Ho-Sun;Ryu, Keun-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.27-33
    • /
    • 2008
  • The clustering of gene expression data is used to analyze the results of microarray studies. This clustering is one of the frequently used methods in understanding degrees of biological change and gene expression. In biological research, MCL algorithm is an algorithm that clusters nodes within a graph, and is quick and efficient. We have modified the existing MCL algorithm and applied it to microarray data. In applying the MCL algorithm we put forth a simulation that adjusts two factors, namely inflation and diagonal tent and converted them by making use of Markov matrix. Furthermore, in order to distinguish class more clearly in the modified MCL algorithm we took the average of each row and used it as a threshold. Therefore, the improved algorithm can increase accuracy better than the existing ones. In other words, in the actual experiment, it showed an average of 70% accuracy when compared with an existing class. We also compared the MCL algorithm with the self-organizing map(SOM) clustering, K-means clustering and hierarchical clustering (HC) algorithms. And the result showed that it showed better results than ones derived from hierarchical clustering and K-means method.

A Study On Predicting Stock Prices Of Hallyu Content Companies Using Two-Stage k-Means Clustering (2단계 k-평균 군집화를 활용한 한류컨텐츠 기업 주가 예측 연구)

  • Kim, Jeong-Woo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.169-179
    • /
    • 2021
  • This study shows that the two-stage k-means clustering method can improve prediction performance by predicting the stock price, To this end, this study introduces the two-stage k-means clustering algorithm and tests the prediction performance through comparison with various machine learning techniques. It selects the cluster close to the prediction target obtained from the k-means clustering, and reapplies the k-means clustering method to the cluster to search for a cluster closer to the actual value. As a result, the predicted value of this method is shown to be closer to the actual stock price than the predicted values of other machine learning techniques. Furthermore, it shows a relatively stable predicted value despite the use of a relatively small cluster. Accordingly, this method can simultaneously improve the accuracy and stability of prediction, and it can be considered as the new clustering method useful for small data. In the future, developing the two-stage k-means clustering is required for the large-scale data application.

Metro Station Clustering based on Travel-Time Distributions (통행시간 분포 기반의 전철역 클러스터링)

  • Gong, InTaek;Kim, DongYun;Min, Yunhong
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.193-204
    • /
    • 2022
  • Smart card data is representative mobility data and can be used for policy development by analyzing public transportation usage behavior. This paper deals with the problem of classifying metro stations using metro usage patterns as one of these studies. Since the previous papers dealing with clustering of metro stations only considered traffic among usage behaviors, this paper proposes clustering considering traffic time as one of the complementary methods. Passengers at each station were classified into passengers arriving at work time, arriving at quitting time, leaving at work time, and leaving at quitting time, and then the estimated shape parameter was defined as the characteristic value of the station by modeling each transit time to Weibull distribution. And the characteristic vectors were clustered using the K-means clustering technique. As a result of the experiment, it was observed that station clustering considering pass time is not only similar to the clustering results of previous studies, but also enables more granular clustering.

A Study on Classification Evaluation Prediction Model by Cluster for Accuracy Measurement of Unsupervised Learning Data (비지도학습 데이터의 정확성 측정을 위한 클러스터별 분류 평가 예측 모델에 대한 연구)

  • Jung, Se Hoon;Kim, Jong Chan;Kim, Cheeyong;You, Kang Soo;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.7
    • /
    • pp.779-786
    • /
    • 2018
  • In this paper, we are applied a nerve network to allow for the reflection of data learning methods in their overall forms by using cluster data rather than data learning by the stages and then selected a nerve network model and analyzed its variables through learning by the cluster. The CkLR algorithm was proposed to analyze the reaction variables of clustering outcomes through an approach to the initialization of K-means clustering and build a model to assess the prediction rate of clustering and the accuracy rate of prediction in case of new data inputs. The performance evaluation results show that the accuracy rate of test data by the class was over 92%, which was the mean accuracy rate of the entire test data, thus confirming the advantages of a specialized structure found in the proposed learning nerve network by the class.