• 제목/요약/키워드: Data Building

검색결과 7,095건 처리시간 0.037초

FUSION OF LASER SCANNING DATA, DIGITAL MAPS, AERIAL PHOTOGRAPHS AND SATELLITE IMAGES FOR BUILDING MODELLING

  • Han, Seung-Hee;Bae, Yeon-Soung;Kim, Hong-Jin;Bae, Sang-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.899-902
    • /
    • 2006
  • For a quick and accurate 3D modelling of a building, laser scanning data, digital maps, aerial photographs and satellite images should be fusioned. Moreover, library establishment according to a standard structure of a building and effective texturing method are required in order to determine the structure of a building. In this study, we made a standard library by categorizing Korean village forms and presented a model that can predict a structure of a building from a shape of the roof on an aerial photo image. We made an ortho image using the high-definition digital image and considerable amount of ground scanning point cloud and mapped this image. These methods enabled a more quick and accurate building modelling.

  • PDF

기상 예보치를 이용한 냉방부하 예측 기법에 관한 연구 (A Study on Estimation of Cooling Load Using Forecasted Weather Data)

  • 한규현;유성연;이제묘
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.937-942
    • /
    • 2008
  • In this paper, new methodology is proposed to estimate the cooling load using design parameters of building and predicted weather data. Only two parameters such as maximum and minimum temperature are necessary to obtain hourly distribution of cooling load for the next day. The maximum and minimum temperature that are used for input parameters can be obtained from forecasted weather data. Benchmarking building(research building) is selected to validate the performance of the proposed method, and the estimated cooling loads in hourly bases are calculated and compared with the measured data for benchmarking building. The estimated results show fairly good agreement with the measured data for benchmarking building.

  • PDF

인공신경망을 이용한 건물의 단기 부하 예측 모델 (Short-Term Load Prediction Using Artificial Neural Network Models)

  • 전병기;김의종
    • 설비공학논문집
    • /
    • 제29권10호
    • /
    • pp.497-503
    • /
    • 2017
  • In recent years, studies on the prediction of building load using Artificial Neural Network (ANN) models have been actively conducted in the field of building energy In general, building loads predicted by ANN models show a sharp deviation unless large data sets are used for learning. On the other hands, some of the input data are hard to be acquired by common measuring devices. In this work, we estimate daily building loads with a limited number of input data and fewer pastdatasets (3 to 10 days). The proposed model with fewer input data gave satisfactory results as regards to the ASHRAE Guide Line showing 21% in CVRMSE and -3.23% in MBE. However, the level of accuracy cannot be enhanced since data used for learning are insufficient and the typical ANN models cannot account for thermal capacity effects of the building. An attempt proposed in this work is that learning procersses are sequenced frequrently and past data are accumulated for performance improvement. As a result, the model met the guidelines provided by ASHRAE, DOE, and IPMVP with by 17%, -1.4% in CVRMSE and MBE, respectively.

건물에너지 분석 방법론 비교 - Steady-state simulation에서부터 Data-driven 방법론의 비교 분석 - (Comparing Methodology of Building Energy Analysis - Comparative Analysis from steady-state simulation to data-driven Analysis -)

  • 조수연;이승복
    • KIEAE Journal
    • /
    • 제17권5호
    • /
    • pp.77-86
    • /
    • 2017
  • Purpose: Because of the growing concern over fossil fuel use and increasing demand for greenhouse gas emission reduction since the 1990s, the building energy analysis field has produced various types of methods, which are being applied more often and broadly than ever. A lot of research products have been actively proposed in the area of the building energy simulation for over 50 years around the world. However, in the last 20 years, there have been only a few research cases where the trend of building energy analysis is examined, estimated or compared. This research aims to investigate a trend of the building energy analysis by focusing on methodology and characteristics of each method. Method: The research papers addressing the building energy analysis are classified into two types of method: engineering analysis and algorithm estimation. Especially, EPG(Energy Performance Gap), which is the limit both for the existing engineering method and the single algorithm-based estimation method, results from comparing data of two different levels- in other words, real time data and simulation data. Result: When one or more ensemble algorithms are used, more accurate estimations of energy consumption and performance are produced, and thereby improving the problem of energy performance gap.

AUTOMATIC BUILDING EXTRACTION BASED ON MULTI-SOURCE DATA FUSION

  • Lu, Yi Hui;Trinder, John
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.248-250
    • /
    • 2003
  • An automatic approach and strategy for extracting building information from aerial images using combined image analysis and interpretation techniques is described in this paper. A dense DSM is obtained by stereo image matching. Multi-band classification, DSM, texture segmentation and Normalised Difference Vegetation Index (NDVI) are used to reveal building interest areas. Then, based on the derived approximate building areas, a shape modelling algorithm based on the level set formulation of curve and surface motion has been used to precisely delineate the building boundaries. Data fusion, based on the Dempster-Shafer technique, is used to interpret simultaneously knowledge from several data sources of the same region, to find the intersection of propositions on extracted information derived from several datasets, together with their associated probabilities. A number of test areas, which include buildings with different sizes, shape and roof colour have been investigated. The tests are encouraging and demonstrate that the system is effective for building extraction, and the determination of more accurate elevations of the terrain surface.

  • PDF

지표 건물이 도시유역의 침수특성에 미치는 영향 (Impact of Building Blocks on Inundation Level in Urban Drainage Area)

  • 이정영;하성룡
    • 환경영향평가
    • /
    • 제22권1호
    • /
    • pp.99-107
    • /
    • 2013
  • This study is an impact assessment of building blocks on urban inundation depth and area. LiDAR data is used to generate two original data set in terms of DEM with $5{\times}5$ meter and building block elevation layer of the study drainage area in Cheongju and then the building block elevation layer is modified again to the mesh data with same size to DEM. Two-dimensional inundation analysis is carried out by applying 2D SWMM model. The inundation depth calculated by using the building block elevation layer shows higher reliability than the DEM. This is resulted from the building block interference to surface flow. In addition, the maximum flooded area by DEM is two times wider than the area by building block layer. In the case of the surface velocity, the difference of velocity is negligible in either DEM or building block case in the low building impact zone. However, If the impact of building on the surface velocity was increase, the gap of velocity was significant.

건물냉방부하에 대한 동적 인버스 모델링기법의 EnergyPlus 건물모델 적용을 통한 성능평가 (Performance Evaluation of a Dynamic Inverse Model with EnergyPlus Model Simulation for Building Cooling Loads)

  • 이경호
    • 설비공학논문집
    • /
    • 제20권3호
    • /
    • pp.205-212
    • /
    • 2008
  • This paper describes the application of an inverse building model to a calibrated forward building model using EnergyPlus program. Typically, inverse models are trained using measured data. However, in this study, an inverse building model was trained using data generated by an EnergyPlus model for an actual office building. The EnergyPlus model was calibrated using field data for the building. A training data set for a month of July was generated from the EnergyPlus model to train the inverse model. Cooling load prediction of the trained inverse model was tested using another data set from the EnergyPlus model for a month of August. Predicted cooling loads showed good agreement with cooling loads from the EnergyPlus model with root-mean square errors of 4.11%. In addition, different control strategies with dynamic cooling setpoint variation were simulated using the inverse model. Peak cooling loads and daily cooling loads were compared for the dynamic simulation.

Dynamic field monitoring data analysis of an ancient wooden building in seismic and operational environments

  • Lyu, Mengning;Zhu, Xinqun;Yang, Qingshan
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.1043-1060
    • /
    • 2016
  • The engineering background of this article is an ancient wooden building with extremely high historic and cultural values in Tibet. A full understanding of the dynamic behaviour of this historic building under in-service environments is the basis to assess the condition of the structure, especially its responses to earthquake, environmental and operational loading. A dynamic monitoring system has been installed in the building for over one year and the large amounts of high quality data have been obtained. The paper aims at studying the dynamic behaviour of the wooden building in seismic and operational conditions using the field monitoring data. Specifically the effects of earthquake and crowd loading on the structure's dynamic response are investigated. The monitoring data are decomposed into principal components using the Singular Spectrum Analysis (SSA) technique. The relationship between the average acceleration amplitude and frequencies of the principle components and operational conditions has been discussed. One main contribution is to understand the health condition of complex ancient building based on large databases collected on the field.

항공 LiDAR와 항공사진을 이용한 건물 경계 정교화 (Refinement of Building Boundary using Airborne LiDAR and Airphoto)

  • 김형태;한동엽
    • 한국지리정보학회지
    • /
    • 제11권3호
    • /
    • pp.136-150
    • /
    • 2008
  • 항공사진이나 LiDAR 데이터를 이용하여 건물의 자동 추출에 있어서 많은 연구가 이루어졌지만, 3차원 위치정보와 영상의 형상정보라는 두 데이터의 장점을 융합하여 정확도를 향상시킬 수 있다. 이를 위하여 본 연구에서는 등고선 기반의 건물인식 알고리즘을 사용하여 LiDAR 데이터를 이용한 건물 인식 정확도를 향상시키고, 항공사진을 이용하여 건물 경계의 정교화도 추구하였다. 등고선기반 건물 인식 방법은 건물의 경계와 지붕구조물 정보를 생성할 수 있으며, 기존 TIN기반 인식 방법이나 NDSM기반 방법보다 우수한 건물 탐지 정확도를 보여주었다. 등고선으로 추정된 건물경계에 일정한 크기의 버퍼를 생성하여 항공사진의 경계영역을 한정시키고, double active contour를 사용하여 항공사진의 에지에 맞도록 건물경계를 정교화 하였다. 본 연구성과를 이용하여 향후 추출된 개체 경계의 일정 범위에서 최적의 정합을 수행하여 3차원 건물 경계를 생성할 수 있다.

  • PDF

대한민국 표준기상데이터의 변화추이와 건물부하량에 관한 기초연구 (Basic research on the Building Energy Load Depending on The Climate Change in Korea)

  • 유호천;이관호;강현구
    • 한국태양에너지학회 논문집
    • /
    • 제29권3호
    • /
    • pp.66-72
    • /
    • 2009
  • As 'Low Carbon Green Building' is highly required, programs to evaluate building performance are actively and commonly used. For most of these programs, dynamic responses of buildings against external weather changes are very important. In order to simulate the programs, weather data of each region must be properly entered to estimate accurate amount of building energy consumption. To this end, the existing weather data and weather data of KSES were compared and analyzed to find out how weather changes. Energy load of Korea's standard houses was also analyzed based on this data. As a result, data corresponding to June ${\sim}$ September when cooling is supplied shows 23% of average increase with 30% of peak increase(June). On the other hand, data corresponding to November ${\sim}$ February when heating is supplied shows 29% of average decrease with 34% of peak decrease(November). Increase in cooling load and decrease in heating load in the above data comparison/analysis show that KSES 2009 data reflects increase in average temperature caused by global warming unlike the existing data. Increase in dry-bulb temperature depending on weather change of standard houses increases cooling load by 17% and decreases heating load by 36%