• 제목/요약/키워드: Data Building

검색결과 7,034건 처리시간 0.033초

BEPAT: A platform for building energy assessment in energy smart homes and design optimization

  • Kamel, Ehsan;Memari, Ali M.
    • Advances in Energy Research
    • /
    • 제5권4호
    • /
    • pp.321-339
    • /
    • 2017
  • Energy simulation tools can provide information on the amount of heat transfer through building envelope components, which are considered the main sources of heat loss in buildings. Therefore, it is important to improve the quality of outputs from energy simulation tools and also the process of obtaining them. In this paper, a new Building Energy Performance Assessment Tool (BEPAT) is introduced, which provides users with granular data related to heat transfer through every single wall, window, door, roof, and floor in a building and automatically saves all the related data in text files. This information can be used to identify the envelope components for thermal improvement through energy retrofit or during the design phase. The generated data can also be adopted in the design of energy smart homes, building design tools, and energy retrofit tools as a supplementary dataset. BEPAT is developed by modifying EnergyPlus source code as the energy simulation engine using C++, which only requires Input Data File (IDF) and weather file to perform the energy simulation and automatically provide detailed output. To validate the BEPAT results, a computer model is developed in Revit for use in BEPAT. Validating BEPAT's output with EnergyPlus "advanced output" shows a difference of less than 2% and thus establishing the capability of this tool to facilitate the provision of detailed output on the quantity of heat transfer through walls, fenestrations, roofs, and floors.

BIM 템플릿 개발을 위한 템플릿 구성요소 분석에 관한 연구 (A Study on Analysis of the Template Component for the Development of BIM Template)

  • 이상헌;김미경;최현아;전한종
    • KIEAE Journal
    • /
    • 제11권2호
    • /
    • pp.123-130
    • /
    • 2011
  • BIM based design methodology requires more information than traditional design methodology in order to insure efficiency throughout the project. BIM based design not only requires all building data in the form of 3D shapes, but also all other relevant data regarding building components. Information is typically grouped in a standard classification system such as by standardized material names. The development of a domestic BIM based standard classification system is yet to be created and deployed in the industry. Each designer is specifying their own building information classification systems which is causing inconsistency in the industry. Therefore BIM based designs, are causing confusion in the industry as each designer follow no guidelines for material standardization classification. The lack of information regarding this in the BIM template will continue to cause confusion about a projects building information data consistently. This study is that of preliminary research to develop a BIM template. First, overseas BIM templates were analyzed regarding BIM standards and documentation. Examination then followed regarding the element and characteristics needed for the development of a BIM template, a suggested hierarchy of elements required for a BIM template were then made. The result of this research is that it will be used to develop a "BIM template prototype", to support the generation of building information data regarding neighborhood facilities.

수평면 전일사량 산출모델이 일사열취득계수 및 창면적비를 고려한 건물 에너지 성능분석에 미치는 영향 (Impact of Horizontal Global Solar Radiation Calculation Modelson Building Energy Performance Analysis Considering Solar Heat Gain Coefficient and Window-to-wall Ratio)

  • 김기한;오기환
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.39-47
    • /
    • 2014
  • Solar applications analysis and building energy performance depend on the quality of the solar resource data available. Unfortunately, most of the weather stations do not measure solar radiation data in Korea, as a reason many researchers have studied different solar radiation estimation models and suggested to apply them to various locations in Korea. In addition, they also studied the impact of hourly global solar radiation on energy performance of an office building by comparing the simulated building energy consumptions using four different weather files, one using measured, and three estimated solar radiation from different models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM), and concluded that there was some impact on energy performance of the building due to the using different solar radiation models. However, the result cannot be applied to all other buildings since the simulated office building for that study only used limited building characteristics such as using fixed values of solar heat gain coefficient (SHGC) and window-to-wall ratio (WWR), which are significant parameters related to solar radiation that affect to the building energy consumptions. Therefore, there is a need to identify how the building energy consumption will be changed by varying these building parameters. In this study, the impact of one measured and three estimated global solar radiation on energy performance of the office building was conducted taking account of SHGC and WWR. As a result, it was identified that the impact of four different solar radiation data on energy performance of the office building was evident regardless SHGC and WWR changes, and concluded that the most suitable solar models was changed from the CRM/ZHM to the MRM as SHGC and WWR increases.

개별건물 에너지소비량 보정기법 개발 및 적용방안 (Development and Application of the Calibration Method of Individual Building Energy Consumption)

  • 김동일;이병호
    • 한국태양에너지학회 논문집
    • /
    • 제40권1호
    • /
    • pp.15-24
    • /
    • 2020
  • Building energy consumption generally depends on living patterns of residents and outdoor air temperature changes. Although outdoor air temperature changes effect on building energy consumption, there is no calibration method for the comparison before and after Green Remodeling or BEMS installation etc., Big data of building energy consumption are collected and managed by 『National Integrated Management System of Building Energy』 in Korea, and they are utilized for the development of a calibration method for individual buildings as shown as the calibration method for small-area building stocks in the previous research. This study aims to develope a calibration method using big data of building energy consumption of individual buildings and outdoor air temperature changes, and to propose application of appropriate calibration methods for individual buildings or small-area building stocks according to the calibration purpose and conditions.

Effect of post processing of digital image correlation on obtaining accurate true stress-strain data for AISI 304L

  • Angel, Olivia;Rothwell, Glynn;English, Russell;Ren, James;Cummings, Andrew
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3205-3214
    • /
    • 2022
  • The aim of this study is to provide a clear and accessible method to obtain accurate true-stress strain data, and to extend the limited material data beyond the ultimate tensile strength (UTS) for AISI 304L. AISI 304L is used for the outer construction for some types of nuclear transport packages, due to its post-yield ductility and high failure strain. Material data for AISI 304L beyond UTS is limited throughout literature. 3D digital image correlation (DIC) was used during a series of uniaxial tensile experiments. Direct method extracted data such as true strain and instantaneous cross-sectional area throughout testing such that the true stress-strain response of the material up to failure could be created. Post processing of the DIC data has a considerable effect on the accuracy of the true stress-strain data produced. Influence of subset size and smoothing of data was investigated by using finite element analysis to inverse model the force displacement response in order to determine the true stress strain curve. The FE force displacement response was iteratively adapted, using subset size and smoothing of the DIC data. Results were validated by matching the force displacement response for the FE model and the experimental force displacement curve.

Reliability of numerical computation of pedestrian-level wind environment around a row of tall buildings

  • Lam, K.M.;To, A.P.
    • Wind and Structures
    • /
    • 제9권6호
    • /
    • pp.473-492
    • /
    • 2006
  • This paper presents numerical results of pedestrian-level wind environment around the base of a row of tall buildings by CFD. Four configurations of building arrangement are computed including a single square tall building. Computed results of pedestrian-level wind flow patterns and wind speeds are compared to previous wind tunnel measurement data to enable an assessment of CFD predictions. The CFD model uses the finite-volume method with RNG $k-{\varepsilon}$ model for turbulence closure. It is found that the numerical results can reproduce key features of pedestrian-level wind environment such as corner streams around corners of upwind building, sheltered zones behind buildings and channeled high-speed flow through a building gap. However, there are some differences between CFD results and wind tunnel data in the wind speed distribution and locations of highest wind speeds inside the corner streams. In locations of high ground-level wind speeds, CFD values match wind tunnel data within ${\pm}10%$.

3D Reconstruction of Urban Building using Laser range finder and CCD camera

  • Kim B. S.;Park Y. M.;Lee K. H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.128-131
    • /
    • 2004
  • In this paper, we describe reconstructed 3D-urban modeling techniques for laser scanner and CCD camera system, which are loading on the vehicle. We use two laser scanners, the one is horizon scanner and the other is vertical scanner. Horizon scanner acquires the horizon data of building for localization. Vertical scan data are main information for constructing a building. We compared extraction of edge aerial image with laser scan data. This method is able to correct the cumulative error of self-localization. Then we remove obstacles of 3D-reconstructed building. Real-texture information that is acquired with CCD camera is mapped by 3D-depth information. 3D building of urban is reconstructed to 3D-virtual world. These techniques apply to city plan. 3D-environment game. movie background. unmanned-patrol etc.

  • PDF

공동주택 하자실적자료 분석을 통한 철근콘크리트 공사의 하자담보책임기간 비교연구 (Comparative Review on Term of Warranty Liability of Reinforced Concrete Work through Occurred Defect Data Analysis in Apartment Building)

  • 서덕석;박준모
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.266-267
    • /
    • 2017
  • As apartment buildings defect lawsuits become socioeconomic problems, an objective basis system for the term of warranty liability of reinforced concrete constructions is urgent. This study was carried out as a basic study for developing a basis system for the term of warranty liability. To do this, defect data actual collected in apartment complexes were collected and analyzed. As the result of checking the cumulative rate of defect occurrence in reinforced concrete construction by year, the point of time of reaching the 90% level was the 5th years, which was similar with the provision of the Apartment Building Management Act. However, the current Supreme Court precedent has decided that the term of warranty liability for the main structural parts in reinforced concrete construction shall be 10 years and the dispute is expected to continue in the future in the defect lawsuit.

  • PDF

건물 면적을 이용한 시간별 냉방부하 예측에 관한 연구 (A Study on Prediction of Hourly Cooling Load Using Building Area)

  • 유성연;한규현
    • 설비공학논문집
    • /
    • 제22권11호
    • /
    • pp.798-804
    • /
    • 2010
  • New methodology is proposed to predict the hourly cooling load of the next day using maximum/minimum temperature and building area. The maximum and minimum temperature are obtained from forecasted weather data. The cooling load parameters related to building area are set through a database provided from reference buildings. To validate the performance of the proposed method, the predicted cooling loads in hourly bases are calculated and compared with the measured data. The predicted results show fairly good agreement with the measured data for benchmarking building.

Optimal Implementation Strategies of Building Information Modeling for Construction Projects of LH

  • Lee, Ji-Eun
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.60-62
    • /
    • 2015
  • The BIM-based architectural design can be the optimal method to improve all sectors of construction industry and reduce environmental impact through digital technologies. The goals and effects of BIM needs in LH to be newly planned based on the experience of public sectors, which will ultimately contribute to maximization of effectiveness. Referring the excellent case in the UK, the current BIM standards according to maturity level 2 handle the contents related to modeling, collaborative data production, data management and assure BIM data have to be used from building construction to operation and maintenance of buildings. Therefore the strategy for the utilization of BIM for construction projects in LH consisted of three steps; first, the minimization of defects via BIM: second, strengthening the competitiveness of construction and asset management: third, upgrading the system of building production and maintenance control. After this trial, LH can accumulate know-how for building construction to be more costeffective and competitive.

  • PDF