• Title/Summary/Keyword: Dashpot element

Search Result 15, Processing Time 0.027 seconds

A Study on Improving the Capacity of Absorbing Boundary Using Dashpot (점성감쇠기를 이용하는 흡수경계의 성능 향상에 관한 연구)

  • Kim, Hee-Seok;Lee, Jong-Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.629-640
    • /
    • 2007
  • In this paper an analytical study is carried out to improve the capacity of absorbing boundary using dashpot, one of the most widely used absorbing boundaries in FEM. Using 2-D harmonic plane wave equation, absorbing boundary condition is modified to maximize its capacity according to the incident angle. Validity of the absorbing boundary conditions which is modified is investigated by adopting the solution of Miller and Pursey. The Miller and Pursey's problem is then numerically simulated using the finite element method. The absorption ratios are calculated by comparing the displacements at the absorbing boundary to those at the free field without the absorbing boundary. The numerical study is carried out through comparison of displacement at the interior region and the boundary of the numerical model.

An Effect of Surface Dashpot for KC-1 Basic Insulation System Under Sloshing Loads (슬로싱 하중을 받는 KC-1 단열시스템의 표면 완충 효과)

  • Jin, Kyo Kook;Yoon, Ihn Soo;Yang, Young Chul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.193-199
    • /
    • 2015
  • Sloshing of LNG cargo can cause high impact loads on the supporting and containing structures. This is particularly critical for membrane-type tanks since these will have flat surfaces and corner regions which can lead to increased peak pressures for sloshing impacts. The membrane-type containment system is much more flexible compared to the steel hull structure. As a result, fluid-structure interaction plays an important role in the structural analysis of the containment system under sloshing load. This study is based on the direct calculation method of applying sloshing loads to the KC-1 basic insulation system using finite element analysis. The structural analysis of KC-1 basic insulation system considers the dashpot as fluid-structure interaction between liquid cargo and the LNG containment system. The maximum stress of the polyurethane form for KC-1 insulation system is 1.5 times lower than one without dashpot.

Earthquake Response Analysis for Three-Story Building with Reinforced Concrete Shear Walls (3층 철근콘크리트 전단벽 구조물의 지진응답해석)

  • Rhee, Inkyu;Lee, Eun-Haeng;Kim, Jae-Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.103-110
    • /
    • 2021
  • A shake table test is conducted for the three-story reinforced concrete building structure using 0.28 g, 0.5 g, 0.75 g, and 1.0 g of seismic input motions based on the Gyeongju earthquake. Computational efforts are made in parallel to explore the mechanical details in the structure. For engineering practice, the elastic modulus of concrete and rebar in the dynamic analysis is reduced to 38% and 50%, respectively, to calibrate the structure's natural frequencies. The engineering approach to the reduced modulus of elasticity is believed to be due to the inability to specify the flexibility of the actual boundary conditions. This aspect may lead to disadvantages of nonlinear dynamic analysis that can distort local stress and strain relationships. The initial elastic modulus can be applied directly without the so-called engineering adjustment with infinite element models with spring and spring-dashpot boundary conditions. This has the advantage of imposing the system flexibility of the structure on the sub-boundary conditions of springs and damping devices to control its sensitivity in a serial arrangement. This can reflect the flexibility of realistic boundary conditions and the effects of system damping (such as the gap between a concrete footing and shake table, loosening of steel anchors, etc.) in scalar quantities. However, these spring and dashpot coefficients can only be coordinated based on experimental results, making it challenging to select the coefficients in-prior to perform an experimental test.

Numerical Simulation of Colliding Behaviors of Ice Sheet Considering the Viscous Material Properties (점성변형 특성을 고려한 빙판의 충돌거동에 대한 수치해석)

  • 노인식;신병천
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.162-172
    • /
    • 1993
  • In the present paper, the overall state of the arts of ice mechanics which is the most typical research topic of the artic engineering field was studied. And also, ice loads genrated by ice-structure interaction were estimated using numerical approach. The effects of viscous property of ice sheets to the ice load were investigated. The time dependent deformation behaviors of ice was modeled by visco-plastic problem using the finite element formalism. Constitutive model representing the material properties of ice was idealized by comblned rheological model with Maxwell and Voigt models. Numerical calculations for the bending and crushing behavior of ice sheet which are the most typical interaction modes between ice sheets and structures were carried out. The time dependent viscous behaviors of ice sheets interaction forces acting on structures were analyzed and the results were studied in detail.

  • PDF

Dynamic behavior analysis of tunnel structure under gas explosion load (가스폭발하중에 의한 터널 구조물의 동적거동해석)

  • Kim, Young-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.5
    • /
    • pp.413-430
    • /
    • 2011
  • Consideration on the explosion resistant design of infrastructure has increased in the recent years. The explosion load is caused by gas explosion or bomb blast. In this study an analytical model is developed, whereby the tunnel structure is divided in several elements that are schematized as single degree of freedom mass-spring-dashpot systems on gas explosion. Using this simple model a sensitivity analysis has been carried out on tunnel structure design parameters such as explosive peak pressure, duration of the load, thickness of structure, burial depth. Finite element method was used to investigate the dynamic response and plastic zone of a tunnel under gas explosion. And it was found from the comparison of the analysis results that there are slight differences in the response of the intermediate wall between the single degree of freedom mass-spring-dashpot model and FEM.

A Study on the Performance of Absorbing Boundaries for Wave propagation Using Finite Element Method (유한요소법에서의 파진행 문제를 위한 흡수경계 성능에 관한 연구)

  • 김희석;이종세
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.413-420
    • /
    • 2003
  • In this paper an analytical study is carried out to examine the effectiveness of absorbing boundaries using dashpot. Validity of the absorbing boundary conditions suggested by Lysmer-Kuhlemeyer and White et al. is investigated by adopting the solution of Miller and Pursey. The Miller and Pursey's problem is then numerically simulated using the finite element method. The absorption ratios are calculated by comparing the displacements at the absorbing boundary to those at the free field without the absorbing boundary. The numerical verification is carried out through comparison of displacement at the boundary.

  • PDF

Development of a New Analysis Method of Fluid Film for Efficient Estimate of the Moving Characteristics of Hydrostatic Bearings (유정압베어링 운동특성의 효과적인 예측을 위한 새로운 유막 해석방법의 개발)

  • 전상렬;김권희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.166-174
    • /
    • 2003
  • Hydrostatic bearings are widely used in precision machines due to their high motion guide accuracy, low friction and high load carrying capacity. It is very useful to estimate the moving characteristics of hydrostatic bearings in the design stage. A new method is suggested for the analysis of fluid film in hydrostatic bearings. A combined mesh of 8 node solid elements with negligible deformation resistance and spring-dashpot elements is used in conjunction with the user subroutine of ABAQUS to represent the fluid film. The mesh can be used to capture the deformation of the bearing structure as well as the varying properties of fluid film. Analysis results from the finite element model are compared with theoretical solutions, results from FLUENT analysis and some previous works. With this method, static and dynamic analyses of the system containing the bearings can be performed efficiently.

Two-Dimensional Model Simulation of Balls Motion in a Tumbler-Ball Milling of Metal Powder in Relation with Its Ball Filling Ratio (금속분말의 회전 볼밀링에 있어서 볼 충진율에 따른 볼 거동의 2차원 모델 시뮬레이션)

  • 이길근;김성규;김우열
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.189-196
    • /
    • 2000
  • Effect of ball filling ratio on the behavior of balls motion and their collision characteristic in a tumbler-ball milling of metal powder are investigated by a computer simulation. The discrete element method and the extended Kelvin model composed of nonlinear spring and nonlinear dashpot were employed in the simulation. It can be possible that analysis of the individual balls motion in a three-dimensional actual mill by the two-dimensional model simulation, since the simulated trajectories of ball paths are in relatively good agreement with the actual ones. It knows that the balls motion in the tumbler-ball mill is strongly influenced by the surface conditions of the balls and mill container wall. The energy consumption of the individual balls during impact and the impact frequency of the individual balls increased with an increase in the ball filling ratio and showed maximum values at about 50-60% ball filling ratio, and then decreased.

  • PDF

Flutter Control of a Lifting Surface via Visco-Hysteretic Vibration Absorbers

  • Lacarbonara, Walter;Cetraro, Marek
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.331-345
    • /
    • 2011
  • In this paper, a visco-hysteretic vibration absorber (VA) is proposed to increase the flutter speed of an airfoil and enhance damping in the pre- and post-flutter regimes. The passive system consists of a parallel arrangement of a dashpot and a rateindependent hysteretic element, represented by the Bouc-Wen differential model. The equations of motion are obtained and various tools of linear and nonlinear dynamics are employed to study the effects of the visco-hysteretic VA in the pre- and postflutter ranges.

Solvent Effect on Stress Relaxation of PET Filament Fibers and Self Diffusion of Crystallites

  • Nam Jeong Kim;Eung Ryul Kim;Sang Joon Hahn
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.468-473
    • /
    • 1991
  • Viscoelastic properties of PET filament fibers on stress relaxation were investigated in the solvents of $H_2$O, 0.05% NaOH and 50% DMF using an Instron (UTM4-100 Tensilon) with solvent chamber. The theoretical stress relaxation equation derived by applying the Ree-Eyring's hyperbolic sine law to dashpot of three element non-Newtonian model was applied to the experimental stress relaxation curves, and the model parameters $G_1,G_2$, ${\alpha}$ and ${\beta}$ were obtained. By analyzing temperature dependency of the relaxation time, the values of activation entropy, activation enthalpy and activation free energy for flow in PET filament fiber were evaluated, the activation free energy being about 25.7 kcal/mol. The self diffusion coefficient and hole distance were obtained from parameters ${\alpha}$, ${\beta}$ and crystallite size in order to study the self diffusion and the orientation of crystallites in amorphous region and the effect of solvent.