• 제목/요약/키워드: Darrieus-type runner

검색결과 2건 처리시간 0.015초

Experimental Study on Adjustment of Inlet Nozzle Section to Flow Rate Variation for Darrieus-type Hydro-Turbine

  • Watanabe, Satoshi;Shimokawa, Kai;Furukawa, Akinori;Okuma, Kusuo;Matsushita, Daisuke
    • International Journal of Fluid Machinery and Systems
    • /
    • 제5권1호
    • /
    • pp.30-37
    • /
    • 2012
  • A two dimensional Darrieus-type turbine has been proposed for the hydropower utilization of extra-low head less than 2m. In a practical use of Darrieus-type hydro-turbine, head and flow rate may be varied temporally and seasonally. Considering that the cost advantage is required for the low head hydro turbine system, the Darrieus turbine should be operated with high efficiency in the wider range of flow rate possibly by using an additional device with simpler mechanism. In the present paper, an adjustment of inlet nozzle section by lowering the inlet nozzle height is proposed to obtain the preferable inlet velocity in low flow rate conditions. Effects of resulting spanwise partial inlet flow are investigated. Finally, an effective modification of inlet nozzle height over flow rate variation is shown.

Experimental and Numerical Investigations on Performances of Darriues-type Hydro Turbine with Inlet Nozzle

  • Matsushita, Daisuke;Tanaka, Kei;Watanabe, Satoshi;OKuma, Kusuo;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권4호
    • /
    • pp.151-159
    • /
    • 2014
  • Low head hydropower is one of realistic renewable energies. The Darrieus-type hydro turbine with an inlet nozzle is available for such low head conditions because of its simple structure with easy maintenance. Experimental and numerical studies are carried out in order to examine the effects of gap distances between the runner pitch circle and two edges of inlet nozzle on turbine performances. By selecting narrower gaps of left and right edges, the performance could be improved. From the results of two dimensional numerical simulations, the relation between the performance and flow behaviors around the Darrieus blade are discussed to obtain the guideline of appropriate inlet nozzle design.