• Title/Summary/Keyword: Dark Scenario

Search Result 22, Processing Time 0.025 seconds

On the physical origins for the two-halo conformity

  • Seo, Seongu;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.74.1-74.1
    • /
    • 2017
  • The two-halo conformity is that if a central galaxy in a dark matter halo is quenched in star formation, the central galaxies in other neighboring halos (within ~ 4 Mpc) even with no causal contact seem conformed to be quenched. The galactic similarity ranging far beyond the virial radius of each dark matter halo cannot be explained by known environmental effects (ram pressure, tidal interaction, etc.). Here, using a cosmological hydrodynamic simulation, we put forward new physical origins for the phenomenon; the back-splash galaxies scenario and the halo assembly bias scenario. We discuss the relative importance of the two explanations on a quantitative basis.

  • PDF

Where is the Dark Matter in the Double Radio Relic Galaxy Cluster PLCKG287.0+32.9?

  • Finner, Kyle;Jee, Myungkook J.;Dawson, William;Golovich, Nathan;Gruen, Daniel;Lemaux, Brian;Wittman, David
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.51.2-51.2
    • /
    • 2017
  • Diffuse radio relics are often detected in merging galaxy clusters and are emitted by synchrotron process. Radio relics are believed to trace the shock waves in the intracluster medium induced by ram pressure during a major cluster merger. Radio halos and relics are found in approximately 50 galaxy clusters to date that are all in a state of merging. The rarest of these galaxy clusters contain pairs of relics of similar brightness as well as a radio halo. The massive galaxy cluster PLCKG287.0+32.9 belongs to this rare population and is the second most significant detection from the Planck SZ All-sky Survey. Perhaps even more intriguing is that the radio relics are observed at vastly different distances from the X-ray peak requiring a complex merging scenario. In this study, we use weak-lensing to peer deeper into the merging scenario by reconstructing the dark matter distribution. We relate the mass distribution to the radio, X-ray, and optical emissions to provide constraints for future simulations of the merger. Fitting an NFW profile to the tangential shear we infer the mass of the cluster and discuss its implications for the merging scenario.

  • PDF

Factors affecting the Continuance Usage Intention of Biometric Technology : Comparing Dark Scenario with Bright Scenario (생체인식기술의 지속사용의도에 영향을 미치는 요인에 관한 연구 : 다크 시나리오와 브라이트 시나리오의 비교)

  • Lee, Byung-Yong;Kim, Min-Yong
    • The Journal of Society for e-Business Studies
    • /
    • v.16 no.3
    • /
    • pp.1-22
    • /
    • 2011
  • The purpose of this study is to verify the relationship between expectancy confirmation and continuance usage intention in biometric technology. We extend the continuance usage intention model, TAM and expectation confirmation theory by adding perceived privacy, perceived security and trust. Results was analyzed by using structural equations model. The results show that satisfaction and perceived usefulness have positive effect on continuance usage intention in the bright scenario. Perceived privacy and perceived security are positive factors on perceived usefulness, and perceived privacy is positive effect on perceived security. On the other hand, the respondents who are exposed to the dark scenario have negative effects on the perceived privacy, perceived security and trust. And finally, trust has no significant effect on the perceived usefulness.

Making the Invisible Visible: Dark Matter Mapping of the Merging Galaxy Cluster ZwCl 1447.2+2619 via Weak Lensing

  • Lee, Juheon;Jee, Myungkook James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.37.1-37.1
    • /
    • 2018
  • ZwCL 1447.2+2619 is a merging galaxy cluster at z=0.37 with clear substructures in X-ray emission and galaxy distribution. In addition, the system possesses distinct radio relics. In order to constrain the merger scenario, it is necessary to measure both the distribution and mass of the cluster dark matter. We perform a weak lensing analysis of ZwCL 1447.2+2619 using Subaru imaging data. After carefully addressing instrumental systematics, we detect significant lensing signals. In this talk, our methodology, weak lensing results, and possible merging scenarios will be presented.

  • PDF

Dark Matter Deficient Galaxies Produced via High-velocity Galaxy Collisions In High-resolution Numerical Simulations

  • Shin, Eun-jin;Jung, Minyong;Kwon, Goojin;Kim, Ji-hoon;Lee, Joohyun;Jo, Yongseok;Oh, Boon Kiat
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2020
  • The recent discovery of diffuse dwarf galaxies that are deficient in dark matter appears to challenge the current paradigm of structure formation in our Universe. We describe the numerical experiments to determine if the so-called dark matter deficient galaxies (DMDGs) could be produced when two gas-rich, dwarf-sized galaxies collide with a high relative velocity of ~ 300km/s. Using idealized high-resolution simulations with both mesh-based and particle-based gravito-hydrodynamics codes, we find that DMDGs can form as high-velocity galaxy collisions separate dark matter from the warm disk gas which subsequently is compressed by shock and tidal interaction to form stars. Then using a large simulated universe ILLUSTRISTNG, we discover a number of high-velocity galaxy collision events in which DMDGs are expected to form. However, we did not find evidence that these types of collisions actually produced DMDGs in the ILLUSTRISTNG100-1 run. We argue that the resolution of the numerical experiment is critical to realize the "collision-induced" DMDG formation scenario. Our results demonstrate one of many routes in which galaxies could form with unconventional dark matter fractions.

  • PDF

Effect of Dark Matter on the Collision of High Velocity Clouds with the Galactic Disk

  • Gwak, Gyu-Jin;Kim, Jong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2013
  • High velocity clouds (HVCs) are H I clouds that move with large speed (${\mid}V_{LSR}{\mid}$ >100 km/s) in the halo of the Milky Way. It is now evident that at least some populations of HVCs originated from extragalactic sources, either primordial gas left over from the galaxy formation or gaseous material stripped off from other galaxies closely passing by the Milky Way. HVCs with extragalactic origin play an important role in the star formation of the Milky Way when they eventually collide with the disk of the Milky Way. Although it is still observationally controversial whether HVCs are surrounded by dark matter or not, it is theoretically interesting to investigate the effect of dark matter on the collision of HVCs with the disk of the Milky Way. We model this scenario by using hydrodynamic simulations and search for proper parameters that explain the currently available observations such as the Smith Cloud that is thought to have collided with the Galactic disk already.

  • PDF

A Hydrodynamical Simulation of the Off-Axis Cluster Merger Abell 115

  • Lee, Wonki;Kim, Mincheol;Jee, Myungkook James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.38.1-38.1
    • /
    • 2018
  • A merging galaxy cluster is a useful laboratory to study many interesting astrophysical processes such as intracluster medium heating, particle acceleration, and possibly dark matter self-interaction. However, without understanding the merger scenario of the system, interpretation of the observational data is severely limited. In this work, we focus on the off-axis binary cluster merger Abell 115, which possesses many remarkable features. The cluster has two cool cores in X-ray with disturbed morphologies and a single giant radio relic just north of the northern X-ray peak. In addition, there is a large discrepancy (almost a factor of 10) in mass estimate between weak lensing and dynamical analyses. To constrain the merger scenario, we perform a hydrodynamical simulation with the adaptive mesh refinement code RAMSES. We use the multi-wavelength observational data including X-ray, weak-lensing, radio, and optical spectroscopy to constrain the merger scenario. We present detailed comparisons between the simulation results and these multi-wavelength observations.

  • PDF

Particle Tagging Method to Study the Formation and Evolution of Globular Clusters in Galaxy Clusters

  • Park, So-Myoung;Shin, Jihye;Smith, Rory;Chun, Kyungwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.29.3-29.3
    • /
    • 2021
  • Globular clusters (GCs) form at the very early stage of galaxy formation, and thus can be used as an important clue indicating the environment of the galaxy formation era. Although various GC formation scenarios have been suggested, they have not been examined in the cosmological context. Here we introduce the 'particle tagging method' in order to investigate the formation scenarios of GCs in a galaxy cluster. This method is able to trace the evolution of GCs that form in the dark matter halos which undergo the hierarchical merging events in galaxy cluster environments with an effective computational time. For this we use dark matter merger trees from the cosmological N-body simulation. Finally, we would like to find out the best GC formation scenario which can explain the observational properties of GCs in galaxy clusters.

  • PDF

BLACK HOLES IN GALACTIC NUCLEI: ALTERNATIVES AND IMPLICATIONS

  • Lee, Hyung-Mok
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.89-96
    • /
    • 1992
  • Recent spectroscopic observations indicate concentration of dark masses in the nuclei of nearby galaxies. This has been usually interpreted as the presence of massive black holes in these nuclei. Alternative explanations such as the dark cluster composed of low mass stars (brown dwarfs) or dark stellar remnants are possible provided that these systems can be stably maintained for the age of galaxies. For the case of low mass star cluster, mass of individual stars can grow to that of conventional stars in collision time scale. The requirement of collision time scale being shorter than the Hubble time gives the minimum cluster size. For typical conditions of M31 or M32, the half-mass radii of dark clusters can be as small as 0.1 arcsecond. For the case of clusters composed of stellar remnants, core-collapse and post-collapse expansion are required to take place in longer than Hubble time. Simple estimates reveal that the size of these clusters also can be small enough that no contradiction with observational data exists for the clusters made of white dwarfs or neutron stars. We then considered the possible outcomes of interactions between the black hole and the surrounding stellar system. Under typical conditions of M31 or M32, tidal disruption will occur every $10^3$ to $10^4$ years. We present a simple scenario for the evolution of stellar debris based on basic principles. While the accretion of stellar material could produce large amount of radiation so that the mass-to-light ratio can become too small compared to observational values it is too early to rule out the black hole model because the black hole can consume most of the stellar debris in time scale much shorter than mean time between two successive tidal disruptions. Finally we outline recent effort to simulate the process of tidal disruption and subsequent evolution of the stellar debris numerically using Smoothed Particle Hydrodynamics technique.

  • PDF

Magnetic Field Structure and Formation Scenario of the N159/N160 Star-Forming Complex in the Large Magellanic Cloud

  • Kim, Jaeyeong;Jeong, Woong-Seob;Pyo, Jeonghyun;Pak, Soojong;Park, Won-Kee;Kwon, Jungmi;Tamura, Motohide
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.38.3-39
    • /
    • 2017
  • The N159 and N160 ionized regions in the Large Magellanic Cloud are an important extragalactic star-forming complex. The physical environments and the star formation stages are different in N159 and N160. We performed near-infrared polarimetry to those star forming regions with IRSF/SIRPOL 1.4-m telescope. Near-infrared polarization enabled us to trace the detailed structure of magnetic fields in star-forming regions. Through the polarimetric data of J, H, and Ks bands, we examined the magnetic field structures in the N159/N160 complex. In this presentation, we show complex distribution of the magnetic fields associated with dust and gas structures. We verify the local magnetic fields in each star-forming region, which appear to be related with local environments, such as interior and boundary of shell structure, star-forming HII regions, and boundaries between HII regions and dense dark clouds. We discuss the formation scenario of the N159/N160 complex suggested from the magnetic field structure.

  • PDF