• Title/Summary/Keyword: Damping-Performance

Search Result 1,241, Processing Time 0.027 seconds

Rotordynamic Performance Analysis and Operation Test of a Power Turbine for the Super critical CO2 Cycle Application (초임계 CO2 발전용 파워 터빈의 회전체 동역학 해석 및 구동 시험)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • This paper presents a rotordynamic analysis and the operation of a power turbine applied to a 250 kW super-critical $CO_2$ cycle. The power turbine consists of a turbine wheel and a shaft supported by two fluid film bearings. We use a tilting pad bearing for the power turbine owing to the high speed operation, and employ copper backing pads to improve the thermal management of the bearing. We conduct a rotordynamic analysis based on the design parameters of the power turbine. The dynamic coefficients of the tilting pad bearings were calculated based on the iso-thermal lubrication theory and turbine wheel was modeled as equivalent inertia. The predicted Cambell diagram showed that there are two critical speeds, namely the conical and bending critical speeds under the rated speed. However, the unbalance response prediction showed that vibration levels are controlled within 10 mm for all speed ranges owing to the high damping ratio of the modes. Additionally, the predicted logarithmic decrement indicates that there is no unstable mode. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation, and we monitor the shaft vibration and temperature of the lubricant during the test. In the steady state, we record a temperature rise of $40^{\circ}C$ between the inlet and outlet lubricant and the measured shaft vibration shows good agreement with the prediction.

A dissipative family of eigen-based integration methods for nonlinear dynamic analysis

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.541-557
    • /
    • 2020
  • A novel family of controllable, dissipative structure-dependent integration methods is derived from an eigen-based theory, where the concept of the eigenmode can give a solid theoretical basis for the feasibility of this type of integration methods. In fact, the concepts of eigen-decomposition and modal superposition are involved in solving a multiple degree of freedom system. The total solution of a coupled equation of motion consists of each modal solution of the uncoupled equation of motion. Hence, an eigen-dependent integration method is proposed to solve each modal equation of motion and an approximate solution can be yielded via modal superposition with only the first few modes of interest for inertial problems. All the eigen-dependent integration methods combine to form a structure-dependent integration method. Some key assumptions and new techniques are combined to successfully develop this family of integration methods. In addition, this family of integration methods can be either explicitly or implicitly implemented. Except for stability property, both explicit and implicit implementations have almost the same numerical properties. An explicit implementation is more computationally efficient than for an implicit implementation since it can combine unconditional stability and explicit formulation simultaneously. As a result, an explicit implementation is preferred over an implicit implementation. This family of integration methods can have the same numerical properties as those of the WBZ-α method for linear elastic systems. Besides, its stability and accuracy performance for solving nonlinear systems is also almost the same as those of the WBZ-α method. It is evident from numerical experiments that an explicit implementation of this family of integration methods can save many computational efforts when compared to conventional implicit methods, such as the WBZ-α method.

An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort

  • Ni, Y.Q.;Ye, S.Q.;Song, S.D.
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.53-74
    • /
    • 2016
  • This paper presents an experimental study on constructing a tunable secondary suspension for high-speed trains using magneto-rheological fluid dampers (referred to as MR dampers hereafter), in the interest of improving lateral ride comfort. Two types of MR dampers (type-A and type-B) with different control ranges are designed and fabricated. The developed dampers are incorporated into a secondary suspension of a full-scale high-speed train carriage for rolling-vibration tests. The integrated rail vehicle runs at a series of speeds from 40 to 380 km/h and with different current inputs to the MR dampers. The dynamic performance of the two suspension systems and the ride comfort rating of the rail vehicle are evaluated using the accelerations measured during the tests. In this way, the effectiveness of the developed MR dampers for attenuating vibration is assessed. The type-A MR dampers function like a stiffness component, rather than an energy dissipative device, during the tests with different running speeds. While, the type-B MR dampers exhibit significant damping and high current input to the dampers may adversely affect the ride comfort. As part of an ongoing investigation on devising an effective MR secondary suspension for lateral vibration suppression, this preliminary study provides an insight into dynamic behavior of high-speed train secondary suspensions and unique full-scale experimental data for optimal design of MR dampers suitable for high-speed rail applications.

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.

Design of Adaptive Neuro- Fuzzy Precompensator for Enhancement of Power System Stability (전력계통의 안정도 향상을 위한 적응 뉴로-퍼지 전 보상기 설계)

  • 정형환;정문규;이정필;이준탁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.4
    • /
    • pp.14-22
    • /
    • 2001
  • In this paper, we design the Adaptive Neuro-Fuzzy Precompensator(ANFP) for the suppression of low-frequency oscillation and the improvement of system stability. Here, ANFP is designed to compensate the conventional Power System Stabilizer(PSS). This design technique has the structural merit that is easily implemented by adding ANFP to an existing PSS. Firstly, the Fuzzy Precompensator with Loaming ability is constructed and is directly learned from the input and output data of the generating unit. Because the ANFP has the property of learning, fuzzy rules and membership functions of the compensator can be automatically tuned by teaming algorithm Loaming is based on the minimization of the ems evaluated by comparing the output of the ANFP and a desired controller. Case studies show the 7posed schema can be provided the good damping of the power system over the wide range of operating conditions and improved dynamic performance of the system.

  • PDF

Scale model experimental of a prestressed concrete wind turbine tower

  • Ma, Hongwang;Zhang, Dongdong;Ma, Ze;Ma, Qi
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.353-367
    • /
    • 2015
  • As concrete wind-turbine towers are increasingly being used in wind-farm construction, there is a growing need to understand the behavior of concrete wind-turbine towers. In particular, experimental evaluations of concrete wind-turbine towers are necessary to demonstrate the dynamic characteristics and load-carrying capacity of such towers. This paper describes a model test of a prestressed concrete wind-turbine tower that examines the dynamic characteristics and load-carrying performance of the tower. Additionally, a numerical model is presented and used to verify the design approach. The test results indicate that the first natural frequency of the prestressed concrete wind turbine tower is 0.395 Hz which lies between frequencies 1P and 3P (0.25-0.51 Hz). The damper ratio is 3.3%. The maximum concrete compression stresses are less than the concrete design compression strength, the maximum tensile stresses are less than zero and the prestressed strand stresses are less than the design strength under both the serviceability and ultimate limit state loads. The maximum displacement of the tower top are 331 mm and 648 mm for the serviceability limit state and ultimate limit state, respectively, which is less than L/100 = 1000 mm. Compared with traditional tall wind-turbine steel towers, the prestressed concrete tower has better material damping properties, potential lower maintenance cost, and lower construction costs. Thus, the prestressed concrete wind-turbine tower could be an innovative engineering solution for multi-megawatt wind turbine towers, in particular those that are taller than 100 m.

Development of Loop Filter Design of Plucked String Instruments (개선된 발현악기의 루프 필터 설계 방법)

  • Cho, Sang-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • This paper describes a development of a loop filter design in a physical modeling of the plucked string instrument. The conventional method proposed by V$\"{a}$lim$\"{a}$ki cannot estimate right parameters if a sound has either very short sustain or no sustain. In order to overcome this drawback, we propose the use of the decay region and 5 to 20 harmonics of the sound in the estimation of loop filter parameters. The most appropriate filter coefficient is chosen by frequency signal to noise ratio. To verify the performance of the proposed method, the guitar, gayageum and geomungo were selected as the target because they have different shape, structure, and material of strings. Regardless of the duration of harmonics, the proposed method was able to estimate the loop filter parameters representing frequency-dependent damping of harmonics.

Operational modal analysis of a long-span suspension bridge under different earthquake events

  • Ni, Yi-Qing;Zhang, Feng-Liang;Xia, Yun-Xia;Au, Siu-Kui
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.859-887
    • /
    • 2015
  • Structural health monitoring (SHM) has gained in popularity in recent years since it can assess the performance and condition of instrumented structures in real time and provide valuable information to the asset's manager and owner. Operational modal analysis plays an important role in SHM and it involves the determination of natural frequencies, damping ratios and mode shapes of a constructed structure based on measured dynamic data. This paper presents the operational modal analysis and seismic response characterization of the Tsing Ma Suspension Bridge of 2,160 m long subjected to different earthquake events. Three kinds of events, i.e., short-distance, middle-distance and long-distance earthquakes are taken into account. A fast Bayesian modal identification method is used to carry out the operational modal analysis. The modal properties of the bridge are identified and compared by use of the field monitoring data acquired before and after the earthquake for each type of the events. Research emphasis is given on identifying the predominant modes of the seismic responses in the deck during short-distance, middle-distance and long-distance earthquakes, respectively, and characterizing the response pattern of various structural portions (deck, towers, main cables, etc.) under different types of earthquakes. Since the bridge is over 2,000 m long, the seismic wave would arrive at the tower/anchorage basements of the two side spans at different time instants. The behaviors of structural dynamic responses on the Tsing Yi side span and on the Ma Wan side span under each type of the earthquake events are compared. The results obtained from this study would be beneficial to the seismic design of future long-span bridges to be built around Hong Kong (e.g., the Hong Kong-Zhuhai-Macau Bridge).

Optimization of a PI Controller Design for an Oil Cooler System with a Variable Rotating Speed Compressor (가변속 압축기를 갖는 오일쿨러의 최적 PI 제어기 설계)

  • Kwon, Taeeun;Jeong, Taeyoung;Jeong, Seokkwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.502-508
    • /
    • 2016
  • An optimized PI controller design method is presented to promote the control performance of an oil cooler system for high precision machine tools. First, a transfer function model of the oil cooler system with a variable rotating speed compressor was obtained by the perturbation method as the first order system with a negligible dead time. Then, the closed-loop control system was described as the second order system with a zero. Its dynamic behaviors are mostly governed by characteristic parameters, the damping ratio, and the natural frequency which is incorporated in PI gains. Next, an optimum integral of the time-weighted absolute error (ITAE) criterion was applied to the second order system. The characteristic parameters can be determined by the given design specifications, percent overshoots and settling times and comparisons with the ITAE criterion. Hence, the PI gains were plainly identified in a deterministic way. Finally, the PI gains were fine-tuned to obtain desirable dynamics in real systems, considering the zero effect and parameter variations. The validity of the proposed method was proven by computer simulations and real experiments for selected cases.

Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm

  • Lee, Hyoungsuk;Song, Min-Churl;Suh, Jung-Chun;Chang, Bong-Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.562-577
    • /
    • 2014
  • A reliable steady/transient hydro-elastic analysis is developed for flexible (composite) marine propeller blade design which deforms according to its environmental load (ship speed, revolution speed, wake distribution, etc.) Hydro-elastic analysis based on CFD and FEM has been widely used in the engineering field because of its accurate results however it takes large computation time to apply early propeller design stage. Therefore the analysis based on a boundary element method-Finite Element Method (BEM-FEM) Fluid-Structure Interaction (FSI) is introduced for computational efficiency and accuracy. The steady FSI analysis, and its application to reverse engineering, is designed for use regarding optimum geometry and ply stack design. A time domain two-way coupled transient FSI analysis is developed by considering the hydrodynamic damping ffects of added mass due to fluid around the propeller blade. The analysis makes possible to evaluate blade strength and also enable to do risk assessment by estimating the change in performance and the deformation depending on blade position in the ship's wake. To validate this hydro-elastic analysis methodology, published model test results of P5479 and P5475 are applied to verify the steady and the transient FSI analysis, respectively. As the results, the proposed steady and unsteady analysis methodology gives sufficient accuracy to apply flexible marine propeller design.