• Title/Summary/Keyword: Damping depth

Search Result 97, Processing Time 0.025 seconds

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

Analysis of the Conical Air Bearings with two Circumferential Grooves (2열 원주 그루브 급기 원추형 공기베어링의 해석)

  • 김성균;박상신;한동철
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.56-61
    • /
    • 1994
  • The conical bearing can be used to support the radial and thrust load simultaneously. Two circumferential grooves with discrete hole restrictions are made on the bearing surface in order to increase stiffness. In this paper, the dynamic characteristics of this type of bearings are calculated such as stiffness and damping coefficients. As a results of theoretical analysis, it is verified that there exist the groove depth and distance between two grooves which produce the maximum stiffness at the given bearing dimensions.

A Study on the Plain Grinding Characteristics of Carbon Fiber Epoxy Composite with the GC Grinding Wheel (GC 연삭숫돌을 이용한 탄소섬유 에폭시 복합재료의 평면 연삭특성에 관한 연구)

  • 한흥삼
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.34-47
    • /
    • 2000
  • Since carbon fiber epoxy composite materials have excellent properties for structures due to their high specific strength, high specific modulus, high damping and low thermal expansion, the hollow shafts made of carbon fiber epoxy composites have been widely used for power transmission shafts for motor vehicles , spindles of machine tools, motor base, bearing mount for tool up and manufacturing. The molded composite machine elements are not usually accurate enough for mechanical machine elements, which require turning drilling , cutting and grinding. The experiment are surface grinding wheel GC60 to the carbon fiber epoxy composite specimen with respect to staking angle [0]nT , [45]nT, [90]nT on the CNC grinding machine. In this paper, the surface grinding characteristics of composite plate, which are surveyed experimentally and analytically with respect to the grinding force, surface roughness and wheel loading according to the variable depth of cut, wheel velocity and table feed rate are investigated.

  • PDF

Heaving displacement amplification characteristics of a power buoy in shoaling water with insufficient draft

  • Kweon, Hyuck-Min;Cho, Il-Hyoung;Cho, Hong-Yeon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.614-624
    • /
    • 2013
  • The resonance power buoy is a convincing tool that can increase the extraction efficiency of wave energy. The buoy needs a corresponding draft, to move in resonance with waves within the peak frequency band where wave energy is concentrated. However, it must still be clarified if the buoy acts as an effective displacement amplifier, when there is insufficient water depth. In this study, the vertical displacement of a circular cylinder-type buoy was calculated, with the spectrum data observed in a real shallow sea as the external wave force, and with the corresponding draft, according to the mode frequency of normal waves. Such numerical investigation result, without considering Power Take-Off (PTO) damping, confirmed that the area of the heave responses spectrum can be amplified by up to about tenfold, compared with the wave energy spectrum, if the draft corresponds to the peak frequency, even with insufficient water depth. Moreover, the amplification factor of the buoy varied, according to the seasonal changes in the wave spectra.

Wave Energy Extraction using Partially Submerged Pendulum Plate with Quay Wall (안벽 앞에 부분 잠긴 진자판에 의한 파랑에너지 추출)

  • Cho, Il-Hyoung;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.208-218
    • /
    • 2017
  • The performance of a wave energy converter (WEC) that uses the rolling motion of a partially submerged pendulum plate in front of a quay wall was analyzed. The wave exciting moment and hydrodynamic moment were obtained using a matched eigenfunction expansion method (MEEM) based on the linear potential theory, and then the roll motion response of a pendulum plate, time averaged extracted power, and efficiency were investigated. The optimal PTO damping coefficient was suggested to give the optimal extracted power. The peak value of the optimal extracted power occurs at the resonant frequency. The resonant peak and its width increase as the submergence depth of the pendulum plate decreases and thickness of the pendulum plate increases. An increase in the wave incidence angle reduces the efficiency of the wave energy converter. In addition, the WEC using a rolling pendulum plate contributes not only to the extraction of the wave energy, but also to a reduction in the waves reflected from the quay wall, which helps to stabilize ships going near the quay wall.

Efficiency of TLDs with bottom-mounted baffles in suppression of structural responses when subjected to harmonic excitations

  • Shad, Hossein;Adnan, Azlan;Behbahani, Hamid Pesaran;Vafaei, Mohammadreza
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.131-148
    • /
    • 2016
  • Tuned Liquid Dampers (TLDs) provide low damping when it comes to deep water condition, and that not all water depth is mobilized in energy dissipation. This research focussed on a method to improve the efficiency of TLDs with deep water condition. Several bottom-mounted baffles were installed inside a TLD and the dynamic characteristics of modified TLDs together with their effect on the vibration control of a SDOF structure were studied experimentally. A series of free vibration and harmonic forced vibration tests were carried out. The controlling parameter in the conducted tests was the Vertical Blocking Ratio (VBR) of baffles. Results indicated that increase in VBR decreases the natural frequency of TLD and increases its damping ratio. It was found that the VBR range of 10% to 30% reduced response of the structure significantly. The modified TLD with the VBR of 30% showed the best performance when reduction in structural responses under harmonic excitations were compared.

Performance Prediction of an OWC Wave Power Plant with 3-D Characteristics in Regular Waves

  • Hong, Do-Chun;Hong, Keyyong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.9
    • /
    • pp.729-735
    • /
    • 2012
  • The primary wave energy conversion by a three-dimensional bottom-mounted oscillating water column (OWC) wave power device in regular waves has been studied. The linear potential boundary value problem has been solved following the boundary matching method. The optimum shape parameters such as the chamber length and the depth of the front skirt of the OWC chamber obtained through two-dimensional numerical tests in the frequency domain have been applied in the design of the present OWC chamber. Time-mean wave power converted by the OWC device and the time-mean second-order wave forces on the OWC chamber structure have been presented for different wave incidence angles in the frequency-domain. It has been shown that the peak period of $P_m$ for the optimum damping parameter coincides with the peak period of the time.mean wave drift force when ${\gamma}=0$.

A Study on the Liquefaction of Saturated Sand Layer under Oscillating Water Pressure (수압변동에 의한 포화 모래층의 액상화 연구)

  • Howoong Shon;Hyun-Chul Lim;Dae-Geun Lee
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.59-65
    • /
    • 2000
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure is studied theoretically and experimentally. By the experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress becomes zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical treatment as for the ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquified layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the water and the air in the layer increases the liquified depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquified depth decrease rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquified depth decrease with the increase of the coefficient.

  • PDF

LIQUEFACTION OF SAND SEABED INDUCED BY WATER PRESSURE WAVE (수압변동에 의한 해저사질층의 액상화 현상연구)

  • HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.3
    • /
    • pp.197-203
    • /
    • 2001
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure (water wave) us studied theoretically and experimentally. By the experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress become zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical tearment as for ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquified layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the air in the layer increases the liquified depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquefied depth decrese rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquified depth decrease with the increase of the coefficient.

  • PDF

Liquefaction of Sand Seabed Induced by Water Pressure Wave (변동수압에 의한 사질 해저층의 액상화 연구)

  • Shon, Ho-Woong
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.125-135
    • /
    • 2002
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure (water wave) is studied theoretically and experimentally. By experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress becomes zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical treatment as for the ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquefied layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the water and the air in the layer increases the liquefied depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquefied depth decrease rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquefied depth decrease with the increase of the coefficient.

  • PDF