• Title/Summary/Keyword: Damper cylinder

Search Result 46, Processing Time 0.03 seconds

Effects of Cylinder Shell Elasticity on Effective Bulk Modulus of Oil in Automotive Hydraulic Dampers (차량용 유압감쇠기 내 기름의 유효 체적탄성계수에 미치는 실린더 벽 탄성의 영향)

  • 이일영;손단단
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.187-197
    • /
    • 2004
  • This paper presents the effects of cylinder shell elasticity on effective bulk modulus of oil $K_e$ in automotive hydraulic dampers. A theoretical model of cylinder shell bulk modulus $K_c$ based on the elasticity theory of thick-walled cylinder incorporating not only radial but longitudinal deformation is proposed. In a cylinder, values of $K_c$ by the new model and traditional models are computed and the discrepancies among them are discussed. In a twin-tube type automotive damper, the variation of $K_e$ under different pressure values in chambers of the damper cylinder, based on different theoretical models for $K_c$ is computed. Through these computations, it is shown that remarkable discrepancies in computed values of $K_e$ might occur according to the $K_e$ models in connection with $K_c$ models.

Characteristic Analysis of the Damper Cylinder for the Automotive Hydraulic Clutch System (차량용 유압 클러치시스템의 댐퍼실린더 특성해석)

  • Lee, Choon-Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.151-158
    • /
    • 2008
  • The clutch system is a subcomponent of the transmission that is designed to engage and disengage power flow between the engine and the transmission. Recently, the engine power of automobile has been continuously increased because of customer's demand for the bigger one. As the engine power is increased, the vibration transmitted to the hydraulic clutch operating system has been increased. Therefore the demand for the reduction of clutch pedal vibration during the operation has been increased. This paper describes the pressure pulsation reduction characteristics of the damper cylinder which is applied to the hydraulic clutch operating system. And the purpose of this study is to propose an analysis model and investigate the effect of the design variable variations for the hydraulic clutch system. Especially, we studied the effect of damper cylinder parameter variations on the hydraulic clutch system performance.

Dynamic Behavior of a Symmetric Cylinder Type Hydraulic Damper for Semi-Active Control (반능동 제어용 대칭 실린더형 유압 감쇠기의 동적 거동)

  • Lee, I.Y.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.82-87
    • /
    • 2002
  • For the dynamic behavior evaluation of a semi-active vibration control system, it is very important to use an accurate mathematical model for the hydraulic damper applied to the control system. In this study, a mathematical model for a symmetric type hydraulic damper was suggested. In this model, the effects of gas volume and oil temperature variation on the bulk modulus of oil were considered. The dynamic behavior of the damper was investigated by experiments and simulations. It was confirmed that the pressure variation, damping force, and mean pressure variation could be estimated with comparatively good precision by the suggested mathematical model. Moreover, it was shown that excessive pressure rise can be generated by the oil expansion due to the heat energy transformed from the exciting energy of the damper for a short period of the damper operation.

  • PDF

CFD Study for Wave Run-up Characteristics Around a Truncated Cylinder with Damper

  • Zhenhao Song;Bo Woo Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.225-237
    • /
    • 2023
  • In this study, numerical simulations for a single fixed truncated circular cylinder in regular waves were conducted to investigate the nonlinear wave run-up under various dampers and wave period conditions. The present study used the volume of fluid (VOF) technique to capture the air-water interface. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation with the k- 𝜖 turbulence model was solved using the commercial computational fluid dynamics (CFD) software STAR-CCM+. First, a systematic spatial convergence study was conducted to assess the performance and precision of the present numerical wave tank. The numerical scheme was validated by comparing the numerical results of wave run-up on a bare truncated cylinder with the experimental results, and a good agreement was achieved. Then, a series of parametric studies were carried out to examine the wave run-up time series around the truncated cylinder with single and dual dampers in terms of the first- and second-order harmonic and mean set-up components. Additionally, the local wave field and the flow velocity vectors adjacent to the cylinder were evaluated. It was confirmed that under short wave conditions, the high position of the damper led to a noticeable increase in the wave run-ups with significant changes in the first- and second-order harmonic components.

Dynamic Characteristics of Eddy Current Damper (와전류 댐퍼의 동적특성)

  • Kwag, Dong-Gi;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.947-951
    • /
    • 2007
  • This paper is concerned with a new concept for the damper without neither a coil spring nor fluid. The new damper concept consists of the permanent magnets and the cylinder of the conducting material. The opposite pole magnets produces the repulsive forces and this is substituted for the coil spring. The relative motion between the magnets and conducting cylinder produces eddy currents thus resulting in the electromagnetic force, which turns out to be the damping force thus and is substituted for a damping fluid. This damper is called the eddy current damper(ECD). The important advantage of the proposed ECD is that it does not require the damping fluid and any external power and is non-contacting and relatively insensitive to temperature. In the present study, the proposed ECD was constructed and experiments were performed to investigate its dynamic characteristics. The experiments shows that the proposed ECD has the excellent damping ability.

  • PDF

A Study on the Pressure Pulsation Reduction for a Hydraulic Clutch Operating System (유압식 클러치 조작기구의 압력맥동저감에 대한 연구)

  • Lee, Choon-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.93-99
    • /
    • 2008
  • The clutch is a subcomponent of the transmission that is designed to engage and disengage power flow between the engine and the transmission. Recently, the engine power of automobile has been continuously increased because of customer's demand for the bigger one. As the engine power is increased, the vibration transmitted to the hydraulic clutch operating system has been increased. Therefore the demand for the reduction of clutch pedal vibration during the operation of the clutch system has been increased. This paper describes the pressure pulsation reduction characteristics of the damper cylinder which is applied to the hydraulic clutch operating system. And the purpose of this study is to confirm the availability of a simulation model and investigating the test results of hydraulic clutch operating system. The test results are compared with the simulation results. Therefore it may be concluded that the simulation model and test results will be very useful f3r the design of hydraulic clutch damper cylinder.

Optimal Design of Air Dampers Applied on Wash Mechines (공기감쇠기의 최적설계와 세탁기에의 응용)

  • 양보석;이재무;하종훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2477-2485
    • /
    • 1994
  • Air damper has a great advantage that is independent of temperature change. This paper presents an analysis approach and an application for designing nonviscous air damper with a piston and a cylinder. The objective functions for optimum design is damping coefficient and is maximized by changing two design variables that are length between piston and cylinder and orifice diameter. A digital computer program was developed which determines optimal air damper configuration for maximum damping coefficients. The results were applied to the automatic washer and are confirmed to be valid for the range of operating conditions.

ER댐퍼의 동특성 해석 및 성능연구

  • 이육형;박명관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.39-46
    • /
    • 2000
  • In this paper, the analysis of dynamic characteristics and performance investigation of the ER damper are investigated. The ER damper is based on a double rod actuator and an electric field are applied to the moving electrode composed of cylinder and piston. The performance of the ER damper is length of piston electrode field and its velocities. The experimental and calculated results show that the characteristic of the ER damper varies with the magnitude of the electric field.

  • PDF

Optimum Design of Viscous Torsional Vibration Damper Using Random Tabu Search Method (Random Tabu 탐색법을 이용한 점성 비틀림 진동감쇠기의 최적설계)

  • 김유신;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.301-306
    • /
    • 1996
  • A torsional damper is generally used to reduce the torsional vibration which occurs at a crankshaft of a multi-cylinder high speed diesel engine. Vibration amplitude should be estimate by the appropriate simulation model to determine the optimum specifications of damper. In this paper a new method which was based on the random tabu search method(RTSM) would be introduced for the viscous damper design to optimize the damping performance. The result was ascertained by comparing with conventional rubber damper.

  • PDF

A Study on the Dynamic Characteristics of Axial Vibration Damper for Two Stroke Low Speed Diesel Engine (저속 2행정 디젤엔진의 종진동 댐퍼 동특성에 관한 연구)

  • 이돈출;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 1994
  • Since two oil shocks in 1970s, all of engine makers have persevered in their efforts to reduce specific fuel consumption and to increase engine power rate as much as possible in marine diesel engines. As a result, the maximum pressure in cylinders of these engines has been continuously increased. It causes direct axial vibration. The axial stiffness of crank shaft is low compared to old types of engine models by increasing the stroke/bore ratio and its major critical speed might occur within engine operation range. An axial damper, therefore, needs to be installed in order to reduce the axial vibration amplitude of the crankshaft. Usually the main critical speed of axial vibration for the propulsion shafting system with a 4-8 cylinder engine exists near the maximum continuous revolution(MCR). In this case, when the damping coefficient of the damper is increased within the allowance of the structural strength, its stiffness coefficient is also increased. Therefore, the main critical speed of axial vibration can be moved beyond the MCR. It has the same function as a conventional detuner. However, in the case of a 9-12 cylinder engine, the main critical speed of axial vibration for the propulsion shafting system exists below the MCR and thus the critical speed cannot be moved beyond the MCR by using an axial damper. In this case, the damping coefficient of an axial damper should be adjusted by considering the range of engine revolution, the location and vibration amplitude of the critical speed, the fore and aft vibration of the hull super structure. It needs to clarify the dynamic characteristics of the axial vibration damper to control the axial vibration appropriately. Therefore authors suggest the calculation method to analyse the dynamic characteristics of axial vibration damper. To confirm the calculation method proposed in this paper, it is applied to the propulsion shafting system of the actual ships and satisfactory results are obtained.

  • PDF