• Title/Summary/Keyword: Damper Orifice

Search Result 43, Processing Time 0.019 seconds

A study on the smoke control performance of the damper exhaust system at FCEV fire in tunnel for small vehicles (소형차 전용터널 내 수소연료전지차 화재시 집중배기방식의 제연성능에 관한 연구)

  • Hong, Seo-Hee;Baek, Doo-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • The road tunnel is a semi-closed space that is blocked on all sides except the entrance and exit, and in the event of a fire, the smoke of the fire spreads longitudinally due to heat buoyancy caused by the fire and air currents that always exist in the tunnel. To solve this problem, smoke removal facilities are installed in road tunnels to secure a safe evacuation environment by controlling the direction of movement of smoke or directly smoking at fire points. In urban areas, the service level of urban roads decreases due to the increase in traffic due to the increase in population, and as a solution, the construction of underground roads in urban areas is increasing. When a fire occurs during hydrogen leakage through TPRD of a hydrogen fuel cell vehicle (FCEV), the fire intensity depends on the amount of leakage, and the maximum fire intensity depends on the orifice diameter of the TPRD. Considering the TPRD orifice diameter of 1.8 mm, this study analyzed the diffusion distance of fire smoke according to the wind speed of the roadway and the opening interval of the large exhaust port when the maximum fire intensity was 15 MW. As a result, it was analyzed that air flow in the tunnel could be controlled if the wind speed of the road in the tunnel was less than 1.25 m/s, and smoke could be controlled within 200 m from the fire if the damper interval was 50 m and 100 m.

Design tables and charts for uniform and non-uniform tuned liquid column dampers in harmonic pitching motion

  • Wu, Jong-Cheng;Wang, Yen-Po;Chen, Yi-Hsuan
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.165-188
    • /
    • 2012
  • In the first part of the paper, the optimal design parameters for tuned liquid column dampers (TLCD) in harmonic pitching motion were investigated. The configurations in design tables include uniform and non-uniform TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 for the design in different situations. A closed-form solution of the structural response was used for performing numerical optimization. The results from optimization indicate that the optimal structural response always occurs when the two resonant peaks along the frequency axis are equal. The optimal frequency tuning ratio, optimal head loss coefficient, the corresponding response and other useful quantities are constructed in design tables as a guideline for practitioners. As the value of the head loss coefficient is only available through experiments, in the second part of the paper, the prediction of head loss coefficients in the form of a design chart are proposed based on a series of large scale tests in pitching base motions, aiming to ease the predicament of lacking the information of head loss for those who wishes to make designs without going through experimentation. A large extent of TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 and orifice blocking ratios ranging from 0%, 20%, 40%, 60% to 80% were inspected by means of a closed-form solution under harmonic base motion for identification. For the convenience of practical use, the corresponding empirical formulas for predicting head loss coefficients of TLCDs in relation to the cross-sectional ratio and the orifice blocking ratio were also proposed. For supplemental information to horizontal base motion, the relation of head loss values versus blocking ratios and the corresponding empirical formulas were also presented in the end.

Modeling and Theoretical Analysis of Thermodynamic Characteristic of Nano Vibration Absorber (나노 진동 흡수기의 모델링 및 열역학적 특성 해석에 대한 이론적 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.93-99
    • /
    • 2003
  • In this study, new shock absorbing system is proposed by using nano-technology based on the theoretical analysis. The new shock absorbing system is complementary to the hydraulic damper, having a cylinder-piston-orifice construction. Particularly for new shock absorbing system, the hydraulic oil is replaced by a colloidal suspension, which is composed of a porous matrix and a lyophobic fluid. The matrix of the suspension is consisted of porous micro-grains with a special architecture: they present nano-pores serially connected to micro-cavities. Until now, only experimentally qualitative studies of new shock absorbing system have been performed, but the mechanism of energy dissipation has not been clarified. This paper presents a modeling and theoretical analysis of the new shock absorbing system thermodynamics, nono-flows and energy dissipation. Compared with hydraulic system, the new shock absorbing system behaves more efficiently, which absorb a large amount of mechanical energy, without heating. The theoretical computations agree reasonably well with the experimental results. As a result. the proposed new shock absorbing system was proved to be an effective one, which can replace with the conventional one.