• Title/Summary/Keyword: Damper Control System

Search Result 701, Processing Time 0.033 seconds

Matching Design of a Tension Controller with Pendulum Dancer in Roll-to-Roll Systems (고속 롤투롤 시스템의 펜듈럼 덴서를 사용한 장력계어기 매칭 설계)

  • Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.81-89
    • /
    • 2009
  • Dancer systems are typical equipment for attenuation of tension disturbances. Lately, demands for high speed roll-to-roll machines are rising but it is prior to attenuate the tension variation on the web entering into the printing zone to achieve the speed increment. Maintaining a constant tension before the first printing cylinder is the key of high speed, high quality printing. Dancer has been researched in two ways, whether it is controlled or not. The first one is active dancer and the other one is passive dancer. In the active dancer, a position of idle roll of dancer is measured and the roll is moved by external hydraulic cylinder to control tension disturbances. While the passive one composed with spring, damper and idle roll has no external actuator to position the idle roll. The tension disturbance causes movement of dancer roll and the displacement of the roll regulates the tension variation. On the other hand a composite type of dancer is applied for roll-to-roll printing machines. It has same apparatus as passive dancer. The displacement of roll is measured and front(or rear) driven roller is controlled to position the roll. In this paper, it is presented an analysis of pendulum dancer including position feedback PI control and logic for PI gain tuning in roll-to-roll machines. Pole-zero map and root locus with varying system parameters gives a design method for control of the dancer.

Control of the Eccentric Building Using a TMD with Torsional Rigidity (비틀림 강성을 가지는 동조질량감쇠기를 이용한 편심건물의 제어)

  • Park, Yong-Koo;Kim, Hyun-Su;Lee, Dong-Guen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • In this stury, control performance of tuned mass damper (TMD) with torsional rigidity for an eccentric structure showing torsional responses is investigated. To this end, an eccentric structure subjected to earthquake excitation is used to evaluate the control performance of torsional TMD by varying installed location and torsional rigidity of TMD, To reduce computational time required for repetitive time history analysis of an example structure having non-proportional damping system due to TMD, an equivalent analytical model is used in this study. Torsional properties of TMD usually neglected in typical TMD are verified to be effective in reduction of torsional responses of the eccentric structure. In the case of eccentric structures, it has been seen that the center of a plane of a structure may not be optimal location of TMD.

Control Performance Evaluation of Smart Mid-story Isolation System with RNN Model (RNN 모델을 이용한 스마트 중간층 면진시스템의 제어성능 평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.774-779
    • /
    • 2020
  • The seismic response reduction capacity of a smart mid-story isolation system was investigated using the RNN model in this study. For this purpose, an RNN model was developed to make a dynamic response prediction of building structures subjected to seismic loads. An existing tall building with a mid-story isolation system was selected as an example structure for realistic research. A smart mid-story isolation system was comprised of an MR damper instead of existing lead dampers. The RNN model predicted the seismic responses accurately compared to those of the FEM model. The simulation time of the RNN model can be reduced significantly compared to the FEM model. After the numerical simulations, the smart mid-story isolation system could effectively reduce the seismic responses of the existing building compared to the conventional mid-story isolation system.

Development and Experimental Evaluation of a Ship Berthing System Using Active Fenders (능동형 펜더 기반의 접안지원시스템 개발 및 실선실험)

  • Kim, Chang-Woo;Lee, Dong-Hun;Park, Jung-Suk;Kim, Young-Bok
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.494-500
    • /
    • 2020
  • Maneuvering vessels in the harbor is an interesting problem in marine cybernetics. The vessel, operated by the pilot and moving very slowly in shallow water, usually is assisted by thrusters, the main propulsion system, and tugboats. In this paper, we suggest a new vessel berthing technique using dampers (cylinder-type fenders) and a system of winches for complex and dangerous berthing situations. We found that control of the fender stroke and rope tension enabled a safe and quick berthing process. The effectiveness and usefulness of this berthing system was verified using a ship of about 2,000 tons.

Study on Measurement Method of Air Egress Velocity in Vestibule of Smoke Control System (특별피난계단 부속실 제연설비의 방연풍속 측정 방법에 관한 연구)

  • Lee, Su-Kyung;Hong, Dae-Hwa
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.85-90
    • /
    • 2011
  • This study of the vestibule of pressurizing smoke control system installed in domestic high-rise buildings for evacuation in case of fire, when the door is open to forming characteristics of the air flow was analyzed using fire dynamics simulator and analyzed of variance. Vestibule which is compartment of the design condition, air flow in the exhaust damper was formed severe turbulence confirming preceding research. The door position is in the range of formed vortex, unsteady flow of air occurs at the point that the door could be confirmed. According to the NFSC 501A, door to symmetrically separate the average of 10 points or more as measured from the average of wind speed to do is based. Under these conditions, it is difficult to measure the characteristics of the upper air flow of upper points. so measuring points are subdivided by more than 64 points method presented in TAB because severe deviation of wind speed.

Stability of Saturation Controllers for the Active Vibration Control of Linear Structures (선형 구조물의 능동 진동 제어를 위한 포화 제어기의 안정성)

  • Moon, Seok-Jun;Lim, Chae-Wook;Huh, Young-Chul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.93-102
    • /
    • 2006
  • Control input's saturation of active control devices for large structures under large external disturbances are often occurred. It is more difficult to obtain the exact values of mass and stiffness as structures are higher. The modelling errors between mathematical models and real structures must be also included as parameter uncertainties. Therefore, in active vibration control of civil engineering structures like buildings and bridges, the robust saturation controller design method considering both control input's saturation and parameter uncertainties of system is needed. In this paper, stabilities of linear optimal controller LQR, modified bang-bang controller, saturated sliding mode controller, and robust saturation controller among various controllers which have been studied and applied to active vibration control of buildings are investigated. Especially, unstable phenomena of the LQR, the modified bang-bang controller and the saturated sliding mode controller when the control input is saturated or parameter uncertainties exist are presented to show the necessity of the robust saturation controller. The robust stability of the robust saturation controller are shown through a numerical example of a 2DOF linear vibrating system and an experimental test of the two-story structure with an active mass damper (AMD).

A Preliminary Design for Hybrid Building System with Progressive Collapse Prevention Means (연속붕괴가 방지된 초고층 복합빌딩시스템의 예비설계)

  • Choi, Ki-Bong;Cho, Tae-Jun;Kim, Seong-Soo;Lee, Jin-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.48-54
    • /
    • 2015
  • In this study, we propose an innovative lateral force distribution building system between tall buildings by utilizing the difference of moment of inertia, resulting the reduction of lateral displacement and the lateral forces in terms of an alternative for the dense human and increased cost of lands in highly integrated city area. A successive collapse prevention means by providing additional bearing plate between connections is proposed. In addition to that, a more economical vibration reduction is expected due to the suggested tuned mass damper on the surface of spacial structure. In the considered verification examples, reduced drifts at the top location of the building systems are validated against static wind pressure loads and static earthquake loads. The suggested hybrid building system will improve the safety and reliability of the new or existing building system in terms of more than 30% reduced drift and vibration through the development of convergence of tall buildings and spatial structures.

Seismic Control of Stiffness-degrading Inelastic SDOF Structures with Fully Elasto-Plastic Dampers (강성저감형 비탄성 단자유도 구조물에 설치된 완전탄소성 감쇠기의 제진성능)

  • Park, Ji-Hun;Kim, Hun-Hee;Kim, Ki-Myon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.37-48
    • /
    • 2010
  • The seismic control effect of reinforced concrete structures with low energy dissipating capacity due to stiffness degradation is investigated through nonlinear time history analysis. The primary structure is idealized as a SDOF system of modified Takeda hysteresis rule and an elasto-perfectly-plastic nonlinear spring is added to represent a hysteretic damping device. Based on statistics of the numerical analysis, equivalent linearization techniques are evaluated, and empirical equations for response prediction are proposed. As a result, estimation of the ductility demand with proposed empirical equations is more desirable than the equivalent linearization techniques. The optimal yield strengths based on empirical equations are significantly different from the optimal yield strength of elasto-perfectly-plastic systems. Also, the results indicate that the reduction effect of the ductility demand is more remarkable for smaller natural periods.

μ-Synthesis Controller Design and Experimental Verification for a Seismic-excited MDOF Building (지진을 받는 다자유도 건물의 μ합성 제어기 설계 및 검증실험)

  • 민경원;주석준;이영철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.41-48
    • /
    • 2002
  • This study is on the structural control experiment for a small scale three-story building structure employing on active mass damper subjected to earthquake loading. $\mu$-synthesis controllers, which belong to robust control strategies, were designed and their performance were experimentally verified. Frequency-dependent weighting functions corresponding to disturbance input and controlled output were defined and combined to produce optimal $\mu$-synthesis controllers. The experiment result shows 60-70% reduction in RMS responses under the band-limited white noise excitation and 30-45% reduction in peak responses under the scaled earthquake excitations. Good agreement was obtained between the simulations based on the identified mathematical model and experimental results. And the simulations for the system with uncertainties show that the designed controllers are robust within a specified range of uncertainties.

Vibration Control of a Cantilever Beam by Using a Piezoelectric Servo-Damper (압전형 서어보 감쇠기를 이용한 외팔보계의 진동제어)

  • 이상호;지원호;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.169-173
    • /
    • 1991
  • 최근 자동화기술의 발달에 따라 산업용 로보트팔의 경량화, 고속화를 실행하 게 되는 경우와 우주, 원자력발전소 등과 같은 특수한 환경하에서 매니퓰레 이터(manipulator)를 제어하게 되는 경우가 많아지고 있는데, 이때 팔의 강성 이 충분하지 않으면 위치결정시 목표점에서의 과도진동이 발생하게 되어 위 치결정정도와 작업효율이 저하된다. 그러므로 이러한 경량화된 장비들의 진 동특성을 파악하고 운동시 발생하는 진동을 효율적으로 제어할 수 있는 제 어기(controller)를 설계하여 잔류진동을 감쇠시키므로써 위치결정시간을 줄 일 수 있고, 전체 작업행정시간이 단축되므로써 작업ㅎ류을 향상시키는 효과 를 가져오게 된다. 이때 원하고자 하는 제어를 하기 위해서는 제어대상 (plant)의 계규명(system identification)을 정확히 하여야 하는데 해석적으로 계를 규명하기가 까다로운 경우 제어기를 설계하는 것이 사실상 어렵게 되 므로 이러한 경우 실험적인 방법으로 주파수응답함수(frequency response function)를 구해 계의 모형(model)을 구하는 방법이 널리 사용되고 있다. 이 분야에 있어서 기존의 논문들은 팔의 변위를 측정하여 진동을 제어하나 이 러한 방법들은 간헐적으로 움직이는 산업장비(예:로보트의 팔)의 과도응답을 제어하기에는 부적합하다. 따라서 본 연구에서는 이러한 장비들의 과도응답 을 효과적으로 제어할 수 있도록 가속도계를 사용, 가속도를 측정하여 변위 를 제어하고자 한다.

  • PDF