• Title/Summary/Keyword: Damages Identification

Search Result 182, Processing Time 0.024 seconds

Structural damage identification with output-only measurements using modified Jaya algorithm and Tikhonov regularization method

  • Guangcai Zhang;Chunfeng Wan;Liyu Xie;Songtao Xue
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.229-245
    • /
    • 2023
  • The absence of excitation measurements may pose a big challenge in the application of structural damage identification owing to the fact that substantial effort is needed to reconstruct or identify unknown input force. To address this issue, in this paper, an iterative strategy, a synergy of Tikhonov regularization method for force identification and modified Jaya algorithm (M-Jaya) for stiffness parameter identification, is developed for damage identification with partial output-only responses. On the one hand, the probabilistic clustering learning technique and nonlinear updating equation are introduced to improve the performance of standard Jaya algorithm. On the other hand, to deal with the difficulty of selection the appropriate regularization parameters in traditional Tikhonov regularization, an improved L-curve method based on B-spline interpolation function is presented. The applicability and effectiveness of the iterative strategy for simultaneous identification of structural damages and unknown input excitation is validated by numerical simulation on a 21-bar truss structure subjected to ambient excitation under noise free and contaminated measurements cases, as well as a series of experimental tests on a five-floor steel frame structure excited by sinusoidal force. The results from these numerical and experimental studies demonstrate that the proposed identification strategy can accurately and effectively identify damage locations and extents without the requirement of force measurements. The proposed M-Jaya algorithm provides more satisfactory performance than genetic algorithm, Gaussian bare-bones artificial bee colony and Jaya algorithm.

Comparative study on damage identification from Iso-Eigen-Value-Change contours and smeared damage model

  • Lakshmanan, N.;Raghuprasad, B.K.;Gopalakrishnan, N.;Sreekala, R.;Rama Rao, G.V.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.735-758
    • /
    • 2010
  • The paper proposes two methodologies for damage identification from measured natural frequencies of a contiguously damaged reinforced concrete beam, idealised with distributed damage model. The first method identifies damage from Iso-Eigen-Value-Change contours, plotted between pairs of different frequencies. The performance of the method is checked for a wide variation of damage positions and extents. The method is also extended to a discrete structure in the form of a five-storied shear building and the simplicity of the method is demonstrated. The second method is through smeared damage model, where the damage is assumed constant for different segments of the beam and the lengths and centres of these segments are the known inputs. First-order perturbation method is used to derive the relevant expressions. Both these methods are based on distributed damage models and have been checked with experimental program on simply supported reinforced concrete beams, subjected to different stages of symmetric and un-symmetric damages. The results of the experiments are encouraging and show that both the methods can be adopted together in a damage identification scenario.

HHT method for system identification and damage detection: an experimental study

  • Zhou, Lily L.;Yan, Gang
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.141-154
    • /
    • 2006
  • Recently, the Hilbert-Huang transform (HHT) has gained considerable attention as a novel technique of signal processing, which shows promise for the system identification and damage detection of structures. This study investigates the effectiveness and accuracy of the HHT method for the system identification and damage detection of structures through a series of experiments. A multi-degree-of-freedom (MDOF) structural model has been constructed with modular members, and the columns of the model can be replaced or removed to simulate damages at different locations with different severities. The measured response data of the structure due to an impulse loading is first decomposed into modal responses using the empirical mode decomposition (EMD) approach with a band-pass filter technique. Then, the Hilbert transform is subsequently applied to each modal response to obtain the instantaneous amplitude and phase angle time histories. A linear least-square fit procedure is used to identify the natural frequencies and damping ratios from the instantaneous amplitude and phase angle for each modal response. When the responses at all degrees of freedom are measured, the mode shape and the physical mass, damping and stiffness matrices of the structure can be determined. Based on a comparison of the stiffness of each story unit prior to and after the damage, the damage locations and severities can be identified. Experimental results demonstrate that the HHT method yields quite accurate results for engineering applications, providing a promising tool for structural health monitoring.

Using frequency response function and wave propagation for locating damage in plates

  • Quek, Ser-Tong;Tua, Puat-Siong
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.343-365
    • /
    • 2008
  • In this study, the frequency domain method which utilizes the evaluation of changes in the structural mode shape is adopted to identify regions which contain localized damages. Frequency response function (FRF) values corresponding to the modal frequency, analogous to the mode shape coefficients, are used since change in natural frequency of the system is usually insignificant for localized damage. This method requires only few sensors to obtain the dynamic response of the structure at specific locations to determine the FRF via fast-Fourier transform (FFT). Numerical examples of an aluminum plate, which includes damages of varying severity, locations and combinations of multiple locations, are presented to demonstrate the feasibility of the method. An experimental verification of the method is also done using an aluminum plate with two different degrees of damage, namely a half-through notch and a through notch. The inconsistency in attaining the FRF values for practical applications due to varying impact load may be overcome via statistical averaging, although large variations in the loading in terms of the contact duration should still be avoided. Nonetheless, this method needs special attention when the damages induce notable changes in the modal frequency, such as when the damages are of high severity or cover more extensive area or near the boundary where the support condition is modified. This is largely due to the significant decrease in the frequency term compared to the increase in the vibration amplitude. For practical reasons such as the use of limited number of sensors and to facilitate automation, extending the resolution of this method of identification may not be efficient. Hence, methods based on wave propagation can be employed as a complement on the isolated region to provide an accurate localization as well as to trace the geometry of the damage.

A Study on the Next Generation Identification System of Mobile-Based using Anonymous Authentication Scheme (익명 인증기법을 이용한 모바일 기반 차세대 본인확인수단에 관한 연구)

  • Park, Jeong Hyo;Jung, Yong Hoon;Jun, Moon Seog
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.12
    • /
    • pp.511-516
    • /
    • 2013
  • The cases of identification forgery and counterfeiting are increasing under the current identification system, which was established based on social conditions and administrative environments over 20 years ago. This leads to an increase of various criminal acts including illegal loan using fake ID and a number of damages caused out of good intentions that result in interference with the operations of public organizations. In addition, according to the advancement of information society, privacy protection has emerged as an important issue. However, ID card exposes individuals' personal information, such as names, resident registration numbers, photos, addresses and fingerprints, and thus the incidents associated with illegal use of personal information are increasing continuously. Accordingly, this study aimed at examining the issues of ID card forgery/counterfeiting and privacy protection and at proposing a next-generation identification system to supplement such weaknesses. The top priority has been set as prevention of forgery/counterfeiting and privacy protection in order to ensure the most important function of national identification system, which is user identification.

Experimental study on bridge structural health monitoring using blind source separation method: arch bridge

  • Huang, Chaojun;Nagarajaiah, Satish
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.69-87
    • /
    • 2014
  • A new output only modal analysis method is developed in this paper. This method uses continuous wavelet transform to modify a popular blind source separation algorithm, second order blind identification (SOBI). The wavelet modified SOBI (WMSOBI) method replaces original time domain signal with selected time-frequency domain wavelet coefficients, which overcomes the shortcomings of SOBI. Both numerical and experimental studies on bridge models are carried out when there are limited number of sensors. Identified modal properties from WMSOBI are analyzed and compared with fast Fourier transform (FFT), SOBI and eigensystem realization algorithm (ERA). The comparison shows WMSOBI can identify as many results as FFT and ERA. Further case study of structural health monitoring (SHM) on an arch bridge verifies the capability to detect damages by combining WMSOBI with incomplete flexibility difference method.

Identification of Damage on a Substructure with Measured Frequency Response Functions

  • Park Nam-Gyu;Park Youn-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1891-1901
    • /
    • 2005
  • Recently the authors tried to find damage position only using measured frequency response functions. According to their work, it seems that the algorithm is very practical since it needs only measured frequency responses while other methods require exact analytic model. But when applying the method to a real structure, it requires lots of experiment. The authors, in this time, propose a method to reduce its experimental load by detecting damage within a substructure. This method searches damages not within an entire structure but within substructures. In addition, damage severity was treated in this paper since it is worthy to know damage severity. Optimization technique is used to estimate damage level using measured responses and damage model. Two test examples, a plate and a jointed structure, are chosen to verify the suggesting method.

Damage assessment of a bridge based on mode shapes estimated by responses of passing vehicles

  • Oshima, Yoshinobu;Yamamoto, Kyosuke;Sugiura, Kunitomo
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.731-753
    • /
    • 2014
  • In this study, an indirect approach is developed for assessing the state of a bridge on the basis of mode shapes estimated by the responses of passing vehicles. Two types of damages, i.e., immobilization of a support and decrease in beam stiffness at the center, are evaluated with varying degrees of road roughness and measurement noise. The assessment theory's feasibility is verified through numerical simulations of interactive vibration between a two-dimensional beam and passing vehicles modeled simply as sprung mass. It is determined that the damage state can be recognized by the estimated mode shapes when the beam incurs severe damage, such as immobilization of rotational support, and the responses contain no noise. However, the developed theory has low robustness against noise. Therefore, numerous measurements are needed for damage identification when the measurement is contaminated with noise.

Element Level System Identification Method without Input Data (미지의 입력자료를 이용한 요소수준의 구조물 손상도 추정기법)

  • Cho, Hyo-Nam;Choi, Young-Min;Moon, Chang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.89-96
    • /
    • 1997
  • Most civil engineering structures, such as highway bridges, towers, power plants and offshore structures suffer structural damages over their service lives caused by adverse loading such as heavy transportation loads, machine vibrations, earthquakes, wind and wave forces. Especially, if excessive load would be acted on the structure, general or partial stiffness should be degraded suddenly and service lives should be shortened eventually For realistic damage assessment of these civil structures, System Identification method using only structure dynamic response data with unknown input excitation is required and thus becoming more challenging problem. In this paper, an improved Iterative Least Squares method is proposed, which seems to be very efficient and robust method, because only the dynamic response data such as acceleration, velocity and displacement is used without input data, and no information on the modal properties is required. The efficiency and robustness of the proposed method is proved by numerical problems and real single span beam model test.

  • PDF

An experimental study for decentralized damage detection of beam structures using wireless sensor networks

  • Jayawardhana, Madhuka;Zhu, Xinqun;Liyanapathirana, Ranjith;Gunawardana, Upul
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.237-252
    • /
    • 2015
  • This paper addresses the issue of reliability and performance in wireless sensor networks (WSN) based structural health monitoring (SHM), particularly with decentralized damage identification techniques. Two decentralized damage identification algorithms, namely, the autoregressive (AR) model based damage index and the Wiener filter method are developed for structural damage detection. The ambient and impact testing have been carried out on the steel beam structure in the laboratory. Seven wireless sensors are installed evenly along the steel beam and seven wired sensor are also installed on the beam to monitor the dynamic responses as comparison. The results showed that wireless measurements performed very much similar to wired measurements in detecting and localizing damages in the steel beam. Therefore, apart from the usual advantages of cost effectiveness, manageability, modularity etc., wireless sensors can be considered a possible substitute for wired sensors in SHM systems.