• Title/Summary/Keyword: Damaged layer

Search Result 312, Processing Time 0.028 seconds

Strain Transmission Characteristics of Packaged Fiber Bragg Grating Sensors for Structural Health Monitoring

  • Cho, Sung-In;Yoo, Seung-Jae;Kim, Eun-Ho;Lee, In;Kwon, Il-Bum;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.236-243
    • /
    • 2010
  • Fiber Bragg grating(FBG) sensor arrays can be used to monitor the mechanical behavior of the large composite structures such as wind turbine rotor blades and aircrafts. However, brittle FBG sensors, especially multiplexed FBG sensors are easily damaged when they are installed in the flexible structures. As a protection of brittle FBG sensors, epoxy packaged FBG sensors have been presented in this paper. Finite element analysis and experiments were performed to evaluate the effects of adhesives, packaging materials and the bonding layer thickness on the strain transmission. Two types of epoxy were used for packaging FBG sensors and the sensor probes were attached with various bonding layer thickness. It was observed that thin bonding layer with high elastic modulus ratio of the adhesive to packaging provided good strain transmission. However, the strain transmission was significantly decreased when elastic modulus of the adhesive was much lower than the packaged FBG sensor probe's one.

Sonochemial and Sonophysical Effects in Heterogeneous Systems (불균일계에서의 초음파 캐비테이션 물리적 및 화학적 효과 연구)

  • Lee, Dukyoung;Son, Younggyu
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.115-122
    • /
    • 2019
  • The objective of this study was to investigate the sonophysical and sonochemical effects induced by acoustic cavitation in heterogeneous systemin a 28 kHz double-bath reactor using calorimetry, the aluminiumfoil erosion test, and the luminol test. With no glass beads, calorimetric power in the inner vessel increased as much as the outer sonoreactor lost and total calorimetric power was maintained for various liquid height conditions (0.5 ~ 7 cm) in the vessel. Higher calorimetric energy was obtained at higher liquid height conditions. Similar results were obtained when glass beads were placed with various beads heights (0.5 ~ 2.0 cm) and relatively high calorimetric energy was obtained in spite of large attenuation in the glass beads layer. An aluminium foil placed between the bottom of the inner vessel and the glass beads layer was damaged, indicating significant sonophysical effects. Much less damage was detected when the foil was placed above the beads layer due to large attenuation of ultrasound. Sonochemical effects, visualized by sonochemiluminescence (SCL), also decreased significantly when the beads were placed in the vessel. It was established that the optimization of the liquid height above the solid-material layer could enhance the sonophysical and sonochemical effects in the double-bath sonoreactors.

Analysis of key elements of single-layer dome structures against progressive collapse

  • Zhang, Qian;Huang, Wenxing;Xu, Yixiang;Cai, Jianguo;Wang, Fang;Feng, Jian
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.257-264
    • /
    • 2022
  • The analysis of the progressive collapse resistance of structures is a well-known issue among structural engineers. Large-span reticulated dome structures are commonly utilized in large public buildings, necessitating research into their progressive collapse resistance to assure user safety. The most significant part of improving the structural resilience of reticulated domes is to evaluate their key elements. Based on a stiffness-based evaluation approach, this work offers a calculating procedure for element importance coefficient. For both original and damaged structures, evaluations are carried out using the global stiffness matrix and the determinant. The Kiewitt, Schwedler, and Sunflower reticulated domes are investigated to explore the distribution characteristic of element importance coefficients in the single-layer dome structures. Moreover, the influences of the load levels, load distributions, geometric parameters and topological features are also discussed. The results can be regarded as the initial concept design reference for single-layer reticulated domes.

The effect of CFRP-concrete bond mechanism on dynamic parameters of repaired concrete girders

  • Fayyadh, Moatasem M.;Razak, Hashim A.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.343-354
    • /
    • 2022
  • An understanding of the mechanism of concrete girders repaired with CFRP plates and its influence on the dynamic parameters is presented in this paper. Dynamic parameters are governed by the relationship with the physical properties of concrete girders and CFRP plates as well as the adhesive layer between them. A brief explanation of the mechanism of the composite action of concrete girders repaired with CFRP is also given in this paper. Experimental work was carried out to validate the theory of the composite action. The results show a decrease in the modal parameters of CFRP repaired girders that were turned over during the repair procedure, which contrasts with the proven static-based results that CFRP plates increase the stiffness of repaired girders. The composite action theory has explained the results based on the tension and compression forces' growth at the adhesive layer between the CFRP plates and girder surface during the repair procedure. Other girders were prepared and repaired without turning over in order to avoid tension and compression forces at the adhesive layer. The experimental results show an increase in the dynamic parameters of CFRP repaired girders that were not turned over during the repair procedure, which aligns with the static-based results. The study concludes that the dynamic parameters are excellent indicators for the assessment of CFRP repaired concrete girders. The study also suggests that researchers should not turn over damaged concrete girders to repair them with CFRP plates if they intend to study the dynamic parameters, in order to avoid the proposed composite action effect on modal parameters.

A Study on the Characteristic Evaluation of An HTS Coil with respect to the Winding Methods

  • Jo, Hyun-Chul;Choi, Suk-Jin;Jang, Jae-Young;Hwang, Young-Jin;Lee, Chang-Young;Ahn, Min-Cheol;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.31-35
    • /
    • 2010
  • In superconducting magnet applications, winding methods of the superconducting magnet can be classified into a layer winding and a pancake winding. The superconducting magnet using high temperature superconductor (HTS) with rectangular shape is generally fabricated using the pancake winding method. On the other hand, low temperature superconducting (LTS) magnet may be wound by either a pancake winding or a layer winding. Compared with the layer winding, the pancake winding method has a merit of easy replacement of a damaged pancake module, but it also has a demerit of requirement of splicing between each double pancake modules. In this paper, we investigated characteristics of the layer and pancake winding methods using HTS. Six samples were wound out of BSCCO and Coated Conductors (CCs) by two winding methods and their characteristics were experimentally observed.

Assessment of Subsurface Damage in Ultraprecision Machined Semiconductors

  • Lucca, D.A.;Maggiore, C.J.;Rhorer, R.L.;Wang, Y.M.;Seo, Y.W.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.156-161
    • /
    • 1995
  • The subsurface damaged layer in ultraprecisison machined single crystal Ge was examined by ion channeling. Single crystal Ge surfaces were prepared by chemo-mechanical polishing, mechanical polishing with 1/4 gm diamond abrasive, single point diamond turning and ultraprecision orthogonal flycutting. The extent of subsurface lattice disorder was compared to the crystal's orginal surface quality. Ion channeling is seen to be useful for quantitative measure of lattice disorder in finely finished surfaces.

A Study on the Precision Machining Characteristics in Heavy Cutting of Al-alloy (Al합금의 중절삭시 정밀가공 특성에 관한 연구)

  • 권용기;김동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.203-208
    • /
    • 2002
  • This paper deals with turning experiments of aluminium alloy using a single crystal diamond with round cutting edge. A face cutting was conducted using a special precision machine to study the characteristic phenomena in heavy cutting of aluminium alloy. In many cases, one of the most important matter on the surface integrity is about a damaged layer remaining just under the surface after machining. A machined surface roughness can be improved at a small geometrical surface roughness under special cutting conditions, even if a steady vibration exists between a tool and a workpiece.

  • PDF

Electron Microscopic Study on the Effect of Albendazole Against Paragonimus Westermani (Albendazole의 폐흡충에 미치는 영향에 관한 전자현미경적 연구)

  • Hwang, Eui-Jung;Kim, Soo-Jin;Joo, Kyoung-Hwan;Rim, Han-Jong
    • Journal of agricultural medicine and community health
    • /
    • v.16 no.2
    • /
    • pp.154-164
    • /
    • 1991
  • Albendazole is a broad spectrum anthelmintics with high activity against intestinal nematodes as well as tremtodes and cestodes infections. But so far wormicidal effect of albendazole against Paragonimus westermani is uncertain. The present study undertaken to observe the morphological changes of Paragonimus westermani which was obtained from experimentally infected with metacercariae isolated from Cambaroides similis and 9 of them were given albendazole 2 doses of 25mg/kg daily for the 2 days and 4 days from the day of 20 weeks after infection. The Paragonimus werms were collected from the lung of the cats which were autopsied at 24 hours after treatment. The fine structures of the collected worms were studied by means of scanning and transmission electron microscopy. The findings of the observations were compared with those of untreated worms. The results are as follows : 1) In the scanning electron microscopic(SEM) observations, the worms obtained from 2 days treated group showed many blebs which were formed on the surface of damaged tegument in between two suckers. Protrusion of oral sucker typically observed and surrounding tegumental ridges were damaged. 2) The worms obtained from 4 days treated group showed marked contraction revealing half size of normal worms. 3) The transmission electronmicroscopic(TEM) observations indicated that large blebs of irregular shapes were formed by the destruction of tegumental ridge of tegumental syncytium and also showed degeneration of mitochondriae. 4) Destruction of tegumental syncytium formation of blebs were usually observed in the ventral side of the worms. 5) Differentiation of tegumental layer and basement layer muscular layer and parenchymal layer around two suckers of worms obtained at 4 days treated group was difficult. 6) Many host cells invaded and destroyed the degenerated tegument by the occurrence of blebs or the exposed muscular layer of the worm after exfoliation of the tegument.

  • PDF

HISTOMORPHOLOGIC CHANGE AND REGENERATION OF THE ADVENTITIA-STRIPPED AND FROZEN RAT FEMORAL ARTERY:HISTOLOGIC, HISTOMORPHOMETRIC, IMMUNOHISTOCHEMICAL AND SCANNING ELECTRON MICROSCOPIC STUDY (백서 대퇴동맥 외막층 제거후 혈관동결시 조직형태학적 변화 및 재생에 관한 연구)

  • Kim, Tae-Deug;Kim, Kyung-Wook;Lee, Jae-Hoon;Kim, Chang-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.25 no.4
    • /
    • pp.281-294
    • /
    • 1999
  • Vasospasm causes microvascular surgery to fail as a main factor in the loss of transferred flap dye to the diminution of blood flow in reconstruction surgery. Although there has been extensive research to resolve the vasospasm problem, no one has reached an ideal solution to date. However, cryotherapy, which is often used for destruction of tumor lesions, is being presented as a new way of releasing vasospasm. After making a histomorphometric measurement on vasodialation during the course of 1, 3 and 7 days, 2 and 4 weeks, and 5 months periods and observing the change of blood vessel in a histologic, immunohistochemical, and scanning electronic microscopic approach, the results were as follows : 1. Vascular inner diameters of the experimental 1 and 3 days groups were measured $476.3{\pm}28.20{\mu}m$, $497.15{\pm}48.79{\mu}m$ respectively showing statistically meaningful vasodilation(P<0.05), which continued by the experiment 4 weeks group. However, in the experimental 5 months group, the vascular inner diameter appeared similar to the control groups. Even though the thickness of smooth muscular layers come out to be thinner in all the experimental groups compared to the control group, it was difficult to find any statistical meaningfulness. In addition, the vascular external diameters of every experimental groups were shown to be longer than the control group. 2. In light microscopic view, severe injury was evident on the smooth muscular layer cell from the experimental 1 day group, started recovering partially from the experimental 7 days group, and was mostly restored in the experimental 4 weeks group and layer of adventitial stripping were nearly recoverd 2 weeks group. 3. The PCNA positive cells of smooth muscular layer were observed from the experimental 7 days group and had a tendency to increase by the experimental 2 weeks group. In the experimental 4 weeks and 5 months group, the number of PCNA possitive cells observed was comparable to the control group. 4. ${\alpha}$-SMA level of smooth muscular layer cells, having been significantly lower than the control group in the severly damaged experimental 1 day group. It was seen to be increased in the experimental 7 days group and turned out to show similar ${\alpha}$-SMA level in 4 weeks to the control group. 5. In the view of SEM, the endothelial cells were destructed and falling off, and also present the appearance of flattening in the experiment 1 day group. The endothelial layer cells started partially recovering from the 7 days group after the freezing injury. On 4 weeks and 5 months, the endothelial cells were fully coverd the damaged area, also it's appearance is similar to control group. In conclusion, the vascular freezing after the removal of adventitia caused damages to smooth muscular layer cells, and brought about vasodilation, which continued by the 4th week. The smooth muscular layer cells started partially reviving from the 7rd day after the damage by vascular freezing, and recovered their similar figure to the control group's 4 weeks later. This was considered the result of cells which surround the damaged blood vessel being influxed into the smooth muscular layers. Therefore, this local freezing injury on the blood vessel was thought to be applied clinically to relieve severe vasospasm which cannot be treated by vasodilation drug, a microvascular surgery.

  • PDF

Study of Plasma Process Induced Damages on Metal Oxides as Buffer Layer for Inverted Top Emission Organic Light Emitting Diodes

  • Kim, Joo-Hyung;Lee, You-Jong;Jang, Jin-Nyoung;Song, Byoung-Chul;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.543-544
    • /
    • 2008
  • In the fabrication of inverted top emission organic light emitting diodes (ITOLEDs), the organic layers are damaged by high-energy plasma sputtering process for transparent top anode. In this study, the plasma process induced damages on metal oxide hole injection layers (HILs) including $WO_3$, $MoO_3$, and $V_2O_5$ as buffer layer are examined. With the result of IV characteristic of hole-only devices, we propose that $MoO_3$ and $V_2O_5$ are stable materials against plasma sputtering process.

  • PDF