• Title/Summary/Keyword: Damaged areas

Search Result 503, Processing Time 0.033 seconds

Damage characteristics of coastal structures by the typhoon in Korea (태풍에 의한 우리나라 해안구조물의 파괴 특성)

  • Choi, Jin-Hyu;Kim, Hong-Jin;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.489-492
    • /
    • 2006
  • In this study we collected and analyzed cases where typhoons damaged coastal structures in Korea in the past 6 years, and hydraulic model tests were conducted in 2D flume. 2 areas where damage was concentrated were selected from ports that had suffered damage. The selected area was Kyungsang-namdo, where there are a total of 26 national ports. Damage to these two areas was organized by wind direction of the typhoons and the direction of the entrance of the port, and destruction patterns were analyzed. 2D hydraulic model tests were conducted of Deabyeun port, one of the damaged areas. Results were as follows: 1. As a result of survey, ports that had entrances that were open to winddirection of typhoon (Anti-clockwise direction) tended to be damaged mare, whereas ports that blocked by island and ports that were not open to wind direction of typhoon were not damaged. 2. As a result of the tests, there was damage that occurred when using the section of designed section, whereas there was no damage when the TTP weight was increased.

  • PDF

Compare Physicochemical Properties of Topsoil from Forest Ecosystems Damage patterns (산림생태계 훼손 유형별 표토의 이화학적 특성 비교)

  • Kim, Won-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.923-928
    • /
    • 2015
  • This study was carried out to evaluate the physicochemical properties of different types of topsoil in forest ecosystems by damage pattern and analyse the possibility of using the topsoil as a planting ground construction material. There were 72 samples from 36 sites of 12 damaged areas and 36 sites of 12 non-damaged areas. The results showed that the physicochemical properties of topsoil from non-damaged areas of forest ecosystems were on an average clay loam~sandy loam in soil texture, showing $0.95{\sim}1.10Mg/m^3$ in soil bulk density, $35.7{\sim}44.0m^3/m^3$ in solid phase, 56.0~64.3 in soil porosity, 8.4~35.8% in aggregate stability, 5~13 mm in soil hardness, 5.3~6.1 in pH, 0.14~0.65 dS/m in EC, 0.28~0.42% in T-N, $14{\sim}22cmol^+/kg$ in CEC, $0.15{\sim}0.31cmol^+/kg$ in Ex. $K^+$, $2.07{\sim}2.84cmol^+/kg$ in Ex. $Ca^{2+}$, $0.45{\sim}1.97cmol^+/kg$ in Ex. $Mg^{2+}$, 17~96 mg/kg in Av. $P_2O_5$ and 3.2~5.6% in OM. On the other hand, damaged areas were on an average clay loam~loamy sand in soil texture, showing $1.54{\sim}1.75Mg/m^3$ in soil bulk density, $52.8{\sim}58.0m^3/m^3$ in solid phase, 42.0~47.2 in soil porosity, 4.2~22.5% in aggregate stability, 13~25 mm in soil hardness, 4.8~5.5 in pH, 0.13~0.62 dS/m in EC, 0.02~0.12% in T-N, $5{\sim}15cmol^+/kg$ in CEC, $0.11{\sim}0.18cmol^+/kg$ in Ex. $K^+$, $0.45{\sim}2.36cmol^+/kg$ in Ex. $Ca^{2+}$, $0.39{\sim}0.96cmol^+/kg$ in Ex. $Mg^{2+}$, 15~257 mg/kg in Av. $P_2O_5$ and 0.4~2.2% in OM. After conducting a comparison of physicochemical characteristics of non-damaged forest area and damaged areas, it was found that the physicochemical characteristics of damaged areas were more deteriorated compared to that of non-damaged areas. Therefore, it is judged that it is necessary to establish countermeasures for the conservation and management of the damaged areas for topsoil recycling in the future.

Degradation Phenomena of Wooden Pillars in the Main Hall of the Fengguo Monastery, Yixian, Liaoning, China - Scientific Investigation with XRD, IC, and FTIR Analysis -

  • Zhou, Yishan;Matsui, Toshiya;Liu, Cheng;Wang, Fei
    • Journal of Conservation Science
    • /
    • v.36 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • The Main Hall of the Fengguo monastery in Yixian county, Liaoning province, China, is the best preserved and largest wooden Buddhist structure, typical of the Liao dynasty style, in China. However, some degradation to the timber frame of the Main Hall has been noted, and this is causing concern in terms of the long-term preservation of the structure. In this study, wooden pillars showing the degradation phenomena of whitening, for areas in contact with the stone floor, and extensive surface damage at higher locations(mostly above 1 m) have been examined. Samples taken from wooden pillar surfaces were analyzed using X-ray powder diffraction, Fourier-transform infrared spectroscopy(FTIR), ion chromatography, and pH measurements. With respect to the whitening phenomenon, we found inorganic calcium precipitates and oxalate ions, along with higher pH values. These symptoms indicated that chemical changes were taking place in response to alkaline conditions, suggesting that alkaline mixtures with calcium content in the foundations may be responsible. Regarding the upper surface-damaged areas, no valid evidence for chemical degradation was found using FTIR analysis, while damaged areas exhibited the presence of more bat guano-related materials than which were apparent in undamaged areas. The occurrence of this surface-damaged phenomenon has therefore been attributed to physical damage caused by bat activity over long periods of time.

A Similarity Weight-based Method to Detect Damage Induced by a Tsunami

  • Jeon, Hyeong-Joo;Kim, Yong-Hyun;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.391-402
    • /
    • 2016
  • Among the various remote sensing sensors compared to the electro-optical sensors, SAR (Synthetic Aperture Radar) is very suitable for assessing damaged areas induced by disaster events owing to its all-weather day and night acquisition capability and sensitivity to geometric variables. The conventional CD (Change Detection) method that uses two-date data is typically used for mapping damage over extensive areas in a short time, but because data from only two dates are used, the information used in the conventional CD is limited. In this paper, we propose a novel CD method that is extended to use data consisting of two pre-disaster SAR data and one post-disaster SAR data. The proposed CD method detects changes by using a similarity weight image derived from the neighborhood information of a pixel in the data from the three dates. We conducted an experiment using three single polarization ALOS PALSAR (Advanced Land Observing Satellite/Phased Array Type L-Band) data collected over Miyagi, Japan which was seriously damaged by the 2011 east Japan tsunami. The results demonstrated that the mapping accuracy for damaged areas can be improved by about 26% with an increase of the g-mean compared to the conventional CD method. These improved results prove the performance of our proposed CD method and show that the proposed CD method is more suitable than the conventional CD method for detecting damaged areas induced by disaster.

Characteristics of Microbial Community Enzyme Activity and Substrate Availability of Damaged Soil (훼손 토양의 미생물군집 효소 활성과 기질 이용성 특성)

  • Ji Seul Kim;Gyo-Cheol Jeong;Myoung Hyeon Cho;Eun Young Lee
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.68-77
    • /
    • 2023
  • The effect of soil damage on the physicochemical characteristics and activity of the soil microbial community is not well known. This study investigates this relationship by analyzing 11 soil samples collected from various points of soil damage across Gyeonggi-do. Soil damage resulted from forest fires, landslides, and development areas, with their impacts most severe on the topsoil layer (0-30 cm). Dehydrogenase and β-glucosidase activities were notably higher at locations damaged by forest fires compared to other sites. While enzyme activities in soils influenced by landslides and development areas were relatively low, sites with a pollution history exhibited elevated dehydrogenase activity, likely due to past microbial response to the pollution. Additionally, an assessment of carbon substrate usability by soil microorganisms indicated higher substrate availability in areas impacted by forest fires, contrasting with lower availability in landslide and development sites. Statistical analysis revealed a positive correlation between organic content of sand and clay and microbial activity. These findings provide valuable insights into soil damage and associated restoration research, as well as management strategies.

An Quantitative Analysis of Severity Classification and Burn Severity At the targe-fire Areas Using NBR Index of Landsat Imagery (Landsat NBR지수를 이용한 대형산불 피해지 구분 및 피해강도의 정량적 분석)

  • Won, Myoung-Soo;Koo, Kyo-Sang;Lee, Myung-Bo
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.231-237
    • /
    • 2007
  • To monitor process of vegetation rehabilitation at the damaged area after large-fire is required a lot of manpowers and budgets. However the analysis of vegetation recovery using satellite imagery can be obtaining rapid and objective result remotely in the large damaged area. Space and airbone sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Burn severity incorporates both short- and long-term post-fire effects on the local and regional environment. Burn severity is defined by the degree to which an ecosystem has changed owing to the fire. To classify fire damaged area and analyze burn severity of Samcheok fire area occurred in 2000, Cheongyang fire 2002, and Yangyang fire 2005 was utilized Landsat TM and ETM+ imagery. Therefore the objective of the present paper is to quantitatively classify fire damaged area and analyze burn severity using normalized burn index(NBR) of pre- and post-fire's Landsat satellite imagery.

  • PDF

Comparative Research on the Vegetation and Changes of Microclimate on the Fire Damaged and Undamaged Areas (산림피해림지와 무피해림지의 식생과 미기상변화에 관하여)

  • Kim, Woen;Chong Un Ri;Uen Ho Lee
    • The Korean Journal of Ecology
    • /
    • v.4 no.3_4
    • /
    • pp.109-113
    • /
    • 1981
  • The area damaged by the fire effect, most serious artificial damage of forest, was measured to analysis vegetation structures and changes of microclimate at the region of the Pal-gong mountain. Vegetation of whole investigated area was Querceto-Pinetum with rich differetial species. But at the areas fire damaged and undamaged, few differential were noted. The two communites appear physiognomical different of temperature according to height an ddepth at the area of damaged was 11:00 a.m. and 13:00 p.m. at undamaged area. On the whole, high temperature distribution at the damaged area and sensitive reaction by the changes of solar radiation were noticed. Changes of humidity according to height were few, but the saturating deficient at 13:00 p.m. at the whole investigated area extremely high and sensitive at the damaged area.

  • PDF

Predicting Landslide Damaged Area According to Climate Change Scenarios (기후변화 시나리오를 적용한 산사태 피해면적 변화 예측)

  • Song Eu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.376-386
    • /
    • 2023
  • Due to climate changes, landslide hazards in the Republic of Korea (hereafter South Korea) continuously increase. To establish the effective landslide mitigation strategies, such as erosion control works, landslide hazard estimation in the long-term perspective should be proceeded considering the influence of climate changes. In this study, we examined the change in landslide-damaged areas in South Korea responding to climate change scenarios using the multivariate regression method. Data on landslide-damaged areas and rainfall from 1981-2010 were used as a training dataset. Sev en indices were deriv ed from rainfall data as the model's input data, corresponding to rainfall indices provided from two SSP scenarios for South Korea: SSP1-2.6 and SSP5-8.5. Prior to the multivariate regression analysis, we conducted the VIF test and the dimension analysis of regression model using PCA. Based on the result of PCA, we developed a regression model for landslide damaged area estimation with two principal components, which cov ered about 93% of total v ariance. With climate change scenarios, we simulated landslide-damaged areas in 2030-2100 using the regression model. As a result, the landslide-damaged area will be enlarged more than the double of current annual mean landslide damaged area of 1981-2010; It infers that landslide mitigation strategies should be reinforced considering the future climate condition.

Soybean Seeds Damaged by Riptortus Clavatus (Thunberg) Reduce Seed Vigor and Quality of Bean Sprout Produce

  • Oh, Young-Jin;Cho, Sang-Kyun;Kim, Young-Jin;Kim, Kyong-Ho;Paik, Chae-Hoon;Kim, Tae-Soo;Kim, Jung-Gon;Cho, Youngkoo
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.439-447
    • /
    • 2010
  • Riptortus clavatus, one of the many insects in major crops, damages pods and seeds, which reduces seed vigor and viability in soybeans. This study was conducted to examine the effect of diversely damaged seeds by R. clavatus on seed germination and seedling emergence and to determine the association of damaged seed with quality and yield of soybean sprouts. All seeds damaged by R. clavatus significantly (P<0.05) reduced seed vigor as measured by the rates of seed germination, germination speed, and seedling emergence. Mean seed germination rate of non-damaged seeds in sprout-soybean varieties was 97.8%, whereas the rates of seeds damaged at different levels, 31-50% and 51-80%, were 23.0 and 5.4%, respectively. The rates of seedling rot and abnormal, incomplete germination significantly (P<0.05) increased as the amount of seeds damaged by R. clavatus increased to 5, 10 and 15% against the total seeds for sprout production. Yield of soybean sprouts from seeds damaged at different levels decreased up to 13% as compared to that in normal seeds. In customer preferences on soybean sprout produce, 84% of customers participated in survey preferred to purchase sprouts from seeds with 5% of damaged seeds, but sprouts produced from seeds with 15% of damaged seeds were intended to purchase only by 22% of the customers. Areas of the seed damaged by R. clavatus were readily infected by pathogens as the seed germinated, resulted in deteriorated quality and reduced yield of sprout produce.

Visible injury and growth inhibition of black pine in relation to oxidative stress in industrial areas

  • Han, Sim-Hee;Kim, Du-Hyun;Ku, Ja-Jung;Byun, Jae-Kyung;Lee, Jae-Cheon
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.333-341
    • /
    • 2010
  • The objective of our study was to investigate the major reasons for the different growth and visible injury on the needles of black pine growing in Ulsan and Yeocheon industrial complex areas, South Korea. After 12 years of growth, we collected climatic and air pollutant data, and analyzed soil properties and the physiological characteristics of black pine needles. Annual and minimum temperatures in Ulsan were higher than those in Yeocheon from 1996 to 2008. Ozone ($O_3$) was the pollutant in greatest concentration in Yeocheon, and whereas the $SO_2$ concentration in most areas decreased gradually during the whole period of growth, $SO_2$ concentration in Yeocheon has increased continuously since 1999, where it was the highest out of four areas since 2005. Total nitrogen and cation exchange capacity in Yeocheon soil were significantly lower than those of Ulsan. The average growth of black pine in Yeocheon was significantly smaller than that in Ulsan, and the growth of damaged trees represented a significant difference between the two sites. Photosynthetic pigment and malondialdehyde content and antioxidative enzyme activity in the current needles of black pine in Yeocheon were not significantly different between damaged and healthy trees, but in 1-year-old needles, there were significant differences between damaged and healthy trees. In conclusion, needle damage in Yeocheon black pine can be considered the result of long-term exposure to oxidative stress by such as $O_3$ or $SO_2$, rather than a difference in climatic condition or soil properties, and the additional expense of photosynthate needed to overcome damage or alleviate oxidative stress may cause growth retardation.